Gd-EOB-DTPA (Primovist®) MRI in evaluating residual liver tumor after radiofrequency ablation (RFA)

Poster No.: C-040
Congress: ECR 2009
Type: Scientific Exhibit
Topic: Abdominal and Gastrointestinal
Authors: S. V. Setola, A. Petrillo, O. Catalano, E. de Lutio di Castelguidone, M. Petrillo, M. Mattace Raso, A. Siani; Naples/IT
Keywords: liver MRI, HCC, Gd-EOB-DTPA, RFA
DOI: 10.1594/ecr2009/C-040

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

- Hepatocellular Carcinoma (HCC) is the seventh most extended cancer all over the world. HCC is highly linked with viral chronic hepatitis or cirrhosis. About 80% of HCC on their showing affect many systems, hence patients are not eligible for surgical liver resection and a big quote of this population can't be treated in accordance to their multi-organs compromised functionality. Remaining 20% patients, only liver suffering:
 - 1/3 of cases undergo surgery.
 - 3/4 of cases will not be surgery treated due to their bi-lobar liver or vital structures involvement.
Therefore Radiofrequency Ablation (RFA) is one of the most commonly employed non-surgical modalities of patient treatment due to its lower mortality index.
During patient staging, detection of small nodules and early recognition of residual/ recurring tumor is a relevant goal to optimize patient management and improve survival rate.
- Gd-EOB-DTPA is a double-effect contrast agent, which can be employed to study the focal liver lesions both during the vascular phase and during the subsequent liver-specific phase.
- Aim of this study was to evaluate the diagnostic efficacy of Magnetic Resonance imaging (MRI) performed administering the new liver-specific contrast agent gadoxetic-acid (Gd-EOB-DTPA) and multidetector CT (MDCT), after RFA, to assess the accuracy in demonstrating necrosis and detecting the residual viable tumour or its regrowth.

Methods and Materials

Patients

- Twenty patients with histologically proven HCC nodules & ultrasound-guided RFA treatment
- Nineteen men and 1 woman
- Mean age: 56 years old (range 46-65 years)
- All patients underwent pretreatment Gd-EOB-DTPA-enhanced MRI and MDCT staging
- All patients were followed up with both imaging modalities at the 1st month and every 3 months during one year

MR Imaging

- 1.5T scanner, multichannel abdominal phased array coil
- AX T2-W breath-hold TFI and AX T1-W breath-hold TSE
- AX T1-W breath-hold TSE dynamic acquisition after injection of 0.1 mmol/Kg (2 ml/Kg) of Gd-EOB-DTPA at 2.5 ml/s speed
- AX and COR T1-W breath-hold TSE, 20 minutes after Gd-EOB-DTPA administration
CT Imaging

- Sixteen detector-row MDCT scanner
- Non-enhanced and triple-phase contrast-enhanced technique (bolus-tracked arterial phase at about 30", venous phase at 70", and delayed phase at 120"), 2-mm acquisition thickness, pitch 1.5, 140 ml of ionic contrast medium (350-370 mg I/ml), at 4 ml/s

RFA technique

- Generator supplying up to 100 W (RF 2000) or 200 W (RF 3000) of power
- Fifteen gauge LeVeen monopolar array electrode (3.5- and 4.0-cm maximum array diameter) with 10 hooks
- For tumors <2.5 cm, the electrode was placed at the center of the tumor
- For larger lesions, the electrode was first placed at the most posterior interface between the tumor and the liver parenchyma; then the electrode was withdrawn and redeployed anteriorly at 1.5- to 2.0-cm intervals in the tumor.

MRI studies analysis

- Retrospective revision of pre-RFA and post-RFA images by two radiologists blinded to MDCT studies and pathology results
- HCC (native, residual, and recurrent): low signal intensity on T1-w, intermediate-to-high signal intensity on T2-w, arterial enhancement with delayed wash-out on T1-w dynamic acquisitions; low signal intensity (poorly-differentiated HCC) or high signal intensity (well-differentiated HCC) on T1-w images obtained during the hepatocitary phase
- Subtraction images (arterial phase minus pre contrast acquisition) to identify signal enhancement on T1-w images

CT studies analysis

- Retrospective revision of pre and post-RF images by two radiologists, blinded to MRI studies and pathology results
- HCC (native, residual, and recurrent): hyperattenuation on arterial-phase images with a wash-out on portal- and delayed-phase images

Results

- Performing MDCT before RFA, 22 HCC lesions were depicted, and after 7 residual tumors and 3 new HCC foci were shown. Dynamic MRI before RFA treatments detected 28 HCC and after 10 residual tumours; during 20 minutes delayed MRI acquisitions 5 new HCC foci were showed (Graph.1).
Graph. 1: global evaluated lesions before and after RFA treatments on both techniques.

- A gain in detecting tumors performing MRI versus MDCT, adminstering Gd-EOB-DTPA, of 3 residual tumors and 2 new HCC foci was obtained (Graph 2); one patient, during 20 min delayed acquisitions (reported as the typical liver specific phase) showed a growing lesion in its transforming into a well differentiated HCC, that was clearly recognizable and after histological proven (Fig.3).
Fig.

Graph. 2: the gain obtained using MRI vs MDCT is well shown in this graph.
- In following cases MRI depicted presence of residual tumor that was not recognizable performing MDCT
Fig.: A-D: (A) Tipically appearance of the cavity on T2-w imaging as low signal intensity area. (B) Nodular enhancement in the arterial phase, indicating presence of residual tumor, in dynamic T1-w acquisitions. (C) The signal absence during the subsequent liver-specific phase indicates that the lesion corresponds to an undifferentiated HCC. (D) Absence of enhancement in CT bolus-tracked arterial phase. In this case MRI depicted the presence of residual tumor not evaluable in CT examination, histological characterized as an undifferentiated HCC.
Fig.: A-F: The cavity shows soft signal hyperintensity on T2-w imaging (A), low signal intensity in unenhanced dynamic T1-w images (B), signal hyperintensity during arterial phase in dynamic T1-w, (C) and rapid wash-out in portal phase (D), index of residual tumor. E: the signal absence during delayed liver specific phase underlines the presence of an undifferentiated HCC. Absence of enhancement in CT bolus-tracked arterial phase (F). In this case only MRI showed the presence of residual tumor, histological characterized as an undifferentiated HCC.
Fig.: A-I: The round area (arrow) shows soft signal hyperintensity on T2-w imaging (A), high signal intensity during arterial phase in dynamic T1-w (D-F) with fast wash-in and wash-out on A/T curve (B). Multiple lesions, with very low signal intensity are shown in the liver delayed phase, bigger one is marked by the arrow (C). Absence of enhancement in CT bolus-tracked arterial phase (G-I). MRI alone showed new recurrences, histological characterized as undifferentiated HCC.
Fig.: The cavity is of low signal intensity on T2-w imaging (A), no rim-enhanced in the MRI arterial phase (B) and in bolus-tracked arterial MDCT phase (C) indicating the absence of residual tumor. Both techniques show, in the arterial phase, a new lesion in the IV segment (arrow in B and C). MR imaging demonstrates, on lower cavity border, an area of enhancement in the arterial phase (E) persistent on delayed hepatocitic phase (F). No enhancement in CT bolus-tracked arterial phase (G). MRI displayed a new recurrence, histological characterized as well differentiated HCC.

Conclusion

- Gd-EOB-DTPA-enhanced MRI is a one-stop two-step examination, combining two phases, the early vascular phase and the 20-minutes delayed hepatocitary phase.
Use of Gd-EOB-DTPA-enhanced MRI made us able to identify more residual HCCs after RFA treatment and more new HCCs than MDCT.