Peritoneal cavity anatomy in CT Peritoneography: a comprehensive description.

Poster No.: C-0401
Congress: ECR 2016
Type: Educational Exhibit
Authors: J. Calvo Blanco, R. Menendez de Llano, A. Mesa Alvarez, P. González Filgueira, H. Cigarrán Sexto, B. ARGÜELLES GARCIA, C. Rodríguez Suárez; Oviedo/ES
Keywords: Abdomen, Anatomy, CT, Education, Education and training
DOI: 10.1594/ecr2016/C-0401

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Learning objectives

- To know CT Peritoneography indications and technique.
- To review the normal peritoneal cavity anatomy by CT Peritoneography.

Background

Peritoneal cavity anatomy is complex and its understanding may be difficult. CT peritoneography can help for a better understanding of the normal peritoneal cavity anatomy. CT Peritoneography, because of its excellent tissue characterization and multiplanar abilities, is a powerful tool for anatomic delineation of the peritoneal cavity.

Continuous ambulatory peritoneal dialysis (CAPD) is an established treatment option used to treat end-stage renal failure. This technique is preferred over hemodialysis for patients in whom vascular access is difficult or for those with diabetes mellitus or cardiovascular disease. In addition, many patients choose CAPD because it allows more independence and mobility. In CAPD the dialysate is infused into the peritoneum using a catheter placed with the tip positioned in the pelvis. The peritoneal membrane serves as the dialyzer because it is a natural semipermeable membrane.

Abdominal CT in conjunction with intraperitoneal infusion of contrast material has been used to assess the dynamics of intraperitoneal fluid. CT Peritoneography is the standard imaging technique for the evaluation of complications related to continuous ambulatory peritoneal dialysis.

At our institution, the contrast material-dialysate mixture is instilled into the peritoneal cavity with sterile techniques by trained staff of the Department of Nephrology. These procedures include drainage of the dialysate, followed by a infusion of a mixture of 2 L dialysate with approximately 150 mL of a non-ionic contrast medium containing 300 mgI/mL. Patient ambulation and changes in position are necessary to achieve good distribution of the contrast medium throughout the peritoneal cavity.

Findings and procedure details

What is the peritoneum?
The peritoneum is a serous sac consisting of a thin mesothelial membrane, composed of a unique layer of mesothelial cells and a connective tissue layer, which lines the abdominopelvic cavity and covers most of the abdominal organs contained therein. Although the peritoneum is a single continuous membrane, it is divided arbitrarily into two sheets, the parietal peritoneum and the visceral peritoneum. The parietal peritoneum covers the abdominal and pelvic cavities and the visceral peritoneum covers the external surface of most abdominal organs. Between the parietal and visceral layers of peritoneum there is a potential space, so-called the peritoneal cavity, with a thin film of serous fluid that lubricates peritoneal surfaces.

Mesentery, omentum and ligaments: What do these terms refer to?

They define several folds of peritoneum that connect organs with other organs or to the abdominal wall. They consist of a double layer of peritoneum that supports a structure within the peritoneal cavity and content blood vessels, lymph nodes, nerves, and fat.

- **Mesentery**: peritoneal fold that suspends the small and large bowel from the posterior peritoneal wall.

 - **Small Bowel mesentery**: it attaches the small bowel to the retroperitoneum and extends from the ligament of Treitz to the ileocecal valve. It contains the superior mesenteric vessels and their branches. It has an oblique position, from top to bottom and from left to right. Fig. 1 on page 6 Fig. 2 on page 6 Fig. 3 on page 7
 - **Transverse colon mesentery or transverse mesocolon**: a peritoneal fold that attaches the transverse colon to the retroperitoneum edge of the pancreas. The mesocolon forms the posteroinferior border of the lesser sac and contains the middle colic vessels. Fig. 1 on page 6 Fig. 2 on page 6 Fig. 3 on page 7. It divides the peritoneal cavity in two great compartments:
 - Supermesocolic compartment.
 - Infamesocolic compartment.
 - **Sigmoid mesocolon**: it is a peritoneal ligament that attaches the sigmoid colon to the posterior pelvic wall and contains the hemorrhoidal and sigmoid vessels. Fig. 2 on page 6 Fig. 3 on page 7

- **Omentum**: mesentery or double layer of peritoneum that extends from the stomach and duodenal bulb to adjacent organs. The lesser and greater omenta extend from the lesser and greater curvatures of the stomach respectively. Fig. 2 on page 6 Fig. 3 on page 7
• The lesser omentum is the double layer of peritoneum that extends from the liver to the lesser curvature of the stomach and the first part of the duodenum. It is made of two contiguous components called the gastrohepatic and hepatoduodenal ligaments:

1. The gastrohepatic ligament connects the liver to the lesser curvature of the stomach. It contains the gastric arteries and veins.
2. The hepatoduodenal ligament connects the liver to the first part of the duodenum and contains the portal vein, the hepatic artery and the common bile duct.

• The greater omentum is attached to the stomach and hangs like an apron from the transverse colon and is usually located anterior to the small bowel. It is made of three components called the gastrocolic, gastrosplenic and gastrophrenic ligaments. The portion of the greater omentum that hangs from the transverse colon becomes redundant and its two layers fuse with one another so the inferior recess of the lesser sac is obliterated, and is therefore composed of four layers of peritoneum.

- **Ligament**: it supports an organ within the peritoneal cavity or connects two organs. It is named according to the structures it connects.

Peritoneal spaces.

Although the peritoneal cavity is unique, it consists of several communicating spaces.

The peritoneal cavity can be divided into the **greater** and **lesser peritoneal sacs**.

- The greater sac constitutes the majority of the peritoneal cavity.
- The lesser sac, also known as the omental bursa, is smaller and lies posterior to the stomach and lesser omentum.

Transverse mesocolon divides the peritoneal cavity into supramesocolic and inframesocolic compartments.

- The **supramesocolic compartment** lies above the transverse mesocolon and includes:

 - **Right and left subphrenic spaces**, separated by the falciform ligament. The falciform ligament attaches the ventral surface of the liver to the anterior abdominal wall and contains the obliterated umbilical vein (**ligamentum teres**). [Fig. 4 on page 8]

 - **Right perihepatic space** is contiguous to the right subphrenic space and surrounds the liver on the right to falciform ligament. The **left perihepatic**
space is contiguous to the left subphrenic space and surrounds the liver on the left to falciform ligament. Fig. 5 on page 9

- **Right and left subhepatic spaces.** The right subhepatic space is so-called the Morison pouch or hepatorenal fossa. The bare area of the liver is devoid of peritoneum and lies between the reflections of the peritoneum at right and left coronary ligaments. This bare area is continuous with the right anterior pararenal space. Fig. 6 on page 10 Fig. 7 on page 10

- **Perisplenic space:** It is contiguous to left subphrenic space and surrounds the spleen. It is bounded inferiorly by the phrenocolic ligament, which serves to support the spleen and attaches the left flexure of the colon to the left hemidiaphragm, and it separates, but not completely, the left subphrenic space from the left paracolic gutter. Fig. 5 on page 9 Fig. 6 on page 10 Fig. 8 on page 12

- **Lesser sac:** the lesser sac is embryologically formed from an infolding of the greater omentum. It is located posterior to the stomach and the greater omentum and communicates with the remainder of the peritoneal spaces through the omental foramen (foramen of Winslow). It is surrounded by the liver, lesser omentum, stomach, transverse mesocolon, greater omentum (gastrocolic ligament) and gastrosplenic ligament Fig. 9 on page 12 Fig. 10 on page 15. It contains three recesses Fig. 11 on page 13 Fig. 12 on page 14:
 - Superior recess, which surrounds the medial aspect of the caudate lobe.
 - Splenic recess. It extends across the midline to the splenic hilum.
 - Inferior recess, which separates the stomach from the pancreas and transverse mesocolon.

- The **inframesocolic compartment** lies below the transverse mesocolon and includes:
 - **Right paracolic gutter:** peritoneal recess on the posterior abdominal wall lying alongside the ascending colon. It is lateral to the ascending colon and continuous with the right perihepatic space Fig. 13 on page 16.
 - **Left paracolic gutter:** peritoneal recess on the posterior abdominal wall lying alongside the descending colon. It is lateral to the descending colon Fig. 13 on page 16. Gutters depth is highly variable Fig. 14 on page 17. The phrenicocolic ligament is a relative but incomplete impediment to the spread of pathologic processes from the left paracolic gutter to the left subphrenic space Fig. 15 on page 17. Both the right and left paracolic gutters communicate with the pelvic space. These gutters are clinically important because they allow a passage for infectious fluids or blood from different compartments of the abdomen.
• **Abdominal central space**: it is located caudal to the transverse mesocolon and between ascending and descending colon. It contains the small bowel and communicates with the pelvic space. *Fig. 16* on page 18.

• **Pelvic cavity**. It is the most gravity-dependent site for fluid accumulation. In men it is the rectovesical space, and in women it is the rectouterine space, so called the pouch of Douglas. Both gutters and the abdominal central space communicates with the pelvic space *Fig. 17* on page 19 *Fig. 18* on page 19.

Images for this section:

Fig. 1: CT Peritoneography. Coronal views. Transverse mesocolon and small bowel mesentery.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 2: CT Peritoneography. Sagital view. Transverse mesocolon, small bowel mesentery and sigmoid mesocolon. Greater omentum and lesser omentum. Sto-Stomach, Liv-Liver, TrColon-Transverse colon, Sig-Sigmoid.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 3: CT Peritoneography. Sagittal view. Transverse mesocolon, small bowel mesentery and sigmoid mesocolon. Greater omentum and lesser omentum. Sto-Stomach, Liv-Liver, TrColon-Transverse colon, Sig-Sigmoid.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 4: CT Peritoneography. Axial and coronal views. Right and left subphrenic spaces, separated by the falciform ligament. Sto-Stomach, Liv-Liver, TrCol-Transverse colon.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 5: CT Peritoneography. Axial view. Right and left perihepatic spaces, separated by the falciform ligament, and the perisplenic space. Sto-Stomach, Liv-Liver, Spl-Spleen.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES

Fig. 6: CT Peritoneography. Axial views. Right perihepatic and subhepatic spaces. Perisplenic space. The bare area of the liver is devoid of peritoneum and lies between the reflections of the peritoneum at right and left coronary ligaments. Sto-Stomach, Liv-Liver, Spl-Spleen.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Liv

R-Kid

Bare area of the liver

SAGITAL
Fig. 7: CT Peritoneography. Sagital view. The bare area of the liver is devoid of peritoneum. This bare area is continuous with the right anterior pararenal space. Liv-Liver, RKid-Right Kidney.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES

Fig. 8: CT Peritoneography. Coronal view. The right subphrenic space communicates with the right perihepatic and subhepatic spaces. The left subphrenic space communicates with perisplenic space. The phrenocolic ligament separates, but not completely, the left subphrenic space from the left paracolic gutter. Sto-Stomach, Liv-Liver, Spl-Spleen.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 9: CT Peritoneography. Coronal and axial views. Lesser sac. It is surrounded by the liver, lesser omentum, stomach, transverse mesocolon, greater omentum (gastrocolic ligament) and gastrosplenic ligament. It contains three recesses: superior, inferior and splenic recess. Sto-Stomach, Liv-Liver, Spl-Spleen, Pan-Pancreas.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 11: CT Peritoneography. Axial views from cranial (A) to caudal (D). Lesser sac (red dot). The superior recess surrounds the medial aspect of the caudate lobe. The inferior recess separates the stomach from the pancreas and transverse mesocolon. The splenic recess extends across the midline to the splenic hilum.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 12: CT Peritoneography. Coronal views from anterior (A) to posterior (D). Lesser sac (red dot). It is surrounded by the liver, lesser omentum, stomach, transverse mesocolon, greater omentum (gastrocolic ligament) and gastroplenic ligament. The mesocolon forms the inferior border of the lesser sac. The splenic recess extends across the midline towards the splenic hilum. Sto-Stomach, Liv-Liver, TrCol-Transverse Colon, Spl-Spleen.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 10: CT Peritoneography. Sagital view. Lesser sac (red dot). It is surrounded by the liver, lesser omentum, stomach, transverse mesocolon, greater omentum (gastrocolic ligament) and gastroplenic ligament. The mesocolon forms the inferior border of the lesser sac. Sto-Stomach, Liv-Liver, TrCol-Transverse Colon.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 13: CT Peritoneography. Axial and sagittal views. Right and left gutters extend alongside the ascending and descending colon respectively. Both paracolic gutters communicate with the pelvic space. Col-Colon.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES

Fig. 14: CT Peritoneography. Axial views. Gutters depth is highly variable. Col-Colon.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 15: CT Peritoneography. Axial and coronal views. The right perihepatic space is continuous with the right paracolic gutter and the pelvic space. The phrenocolic ligament separates, but not completely, the left subphrenic space from the left paracolic gutter. Col-Colon, Spl-Spleen.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 16: CT Peritoneography. Axial and coronal views. The abdominal central space (blue dot) is located caudal to the transverse mesocolon and between ascending and descending colon. It contains the small bowel and communicates with the pelvic space. Col-Colon, Bla-Bladder.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES

Fig. 17: CT Peritoneography. Coronal and axial views. The pelvic space (green dot) is the most gravity-dependent site of the peritoneal cavity. Both the right and left paracolic gutters communicate with the pelvic space. Col-Colon, Bla-Bladder.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Fig. 18: CT Peritoneography. Axial and coronal views. Pelvic space (green dot). The rectovesical recess, in male patients, and the rectouterine recess (the pouch of Douglas), in female patients, are the most gravity-dependent sites for fluid accumulation. Bla-Bladder, Rec-Rectum.

© Department of Radiology. Hospital Universitario Central de Asturias. Oviedo/ES
Conclusion

- CT Peritoneography, because of its excellent tissue characterization and multiplanar abilities, is a powerful tool for anatomic delineation of the peritoneal cavity.

- Knowledge of the peritoneal spaces, ligaments and mesenteries are crucial for the understanding of the anatomy of the peritoneal cavity.

Personal information

Department of Radiology.
Hospital Universitario Central de Asturias.
Oviedo. Spain.
juan.calvobla@gmail.com

References

