Fetal short femurs: interest of three-dimensional computed tomography in prenatal management

Poster No.: B-0384
Congress: ECR 2015
Type: Scientific Paper
Authors: M. Blouet, F. Belloy, G. Benoist, J.-P. Pelage; Caen/FR
Keywords: Foetal imaging, Bones, CT, Diagnostic procedure, Fetus, Congenital
DOI: 10.1594/ecr2015/B-0384

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

Osteochondrodysplasias (OCD) gather anomalies of the growth or the structure of the bones or the cartilages that precede them. Their prevalence in newborn is estimated between 2,3-4/10000 [1-3] and their frequency among perinatal death is 9/10000. A precise diagnosis is often difficult (60-65% by 2D ultrasonography [2-5]) whereas the evaluation of prognosis is accurate in more than 96% [5, 6]. Short femurs are frequent anomalies that can be observed in multiple conditions including OCD.

Normal 0 21 false false false EN-GB JA X-NONE

The objective of our study is to estimate the performances of fetal bone computed tomography in management of short femur, to discriminate OCD and other etiologies (IUGR, constitutional short stature).

Methods and materials

We retrospectively analyzed 59 consecutives fetal bone scans performed at our center from 2006 to 2012. Only scans realized for short femurs were included.

All patients underwent referral ultrasound examination by high-frequency probes for transabdominal (4-8 MHz) and transvaginal (5-9 MHz) way (GE Voluson E8, GE Medical Systems, Ultrasound and Primary Care Diagnostic, Gif sur Yvette, France). The indication of CT scan was a multidisciplinary decision. The acquisition of images was performed by a 40-MDCT (Philips, 2005), until January 2011 and 64-MDCT until 2012 (General Electric, 2011).

The acquisition protocol was: no scout-view, from the pubis, 32-40 cm height, tube voltage: 80-140 kV, tube currents: 20-90 mAs, collimation : 0.9 mm, pitch : 0.6 mm.

The fetal irradiation: fetal effective dose was estimated by the CTDI (Computed Tomography Dose Index).

A pediatric radiologist conducted image reconstruction (MIP, 3D-VR) and analysis. A multidisciplinary team evaluated the images and proposed a diagnosis.

Monitoring of patients:

- Biological prenatal analysis were studied: karyotype, array CGH, FGFR3 mutation

- In case of suspected fetal affection of particular gravity and judged incurable at diagnosis, termination of pregnancy could be accepted, at parental request, in
accordance with the French law [7], and the results of the fetal post-mortem examination including standard X-rays were listed.

- In case of continuation of pregnancy: weight and height at birth, histological examination of placenta, pediatric examination at, at least, 6 months and if possible post natal X-rays were analyzed.

All these data defined the gold standard.

Statistical analysis: diagnostic performance of fetal bone scans to diagnose an OCD was evaluated as well as the ability of the association CT scan/ultrasonography to obtain an accurate diagnosis (sensitivity, specificity, positive predictive value, negative predictive value, the significance level was 0.05).

The radiological diagnosis was compared to postnatal or post-mortem radiographs.

Results

Over the period of the study 40 fetal bone scans were realized for short femur, 27/40 (59%) were isolated. The mean gestational age was 32 weeks (21-35+6).

The mean fetal effective dose estimated by CTDI was 2.5 mGy (0.49-12, # : 2.47).

Termination of pregnancy was accepted for 6 patients (15%).

The final diagnosis was: 10/40 (25%) OCD, 18/40 (45%) constitutional short statures, 12/40 (30%) IUGR.

The OCD were: 2 achondroplasias, 1 hypochondroplasia, 1 Spondyloepiphyseal dysplasia congenital, 1 Diastrophic dysplasia, 1 Asphyxiating thoracic dysplasia, 1 Chondroectodermal dysplasia, 1 Thanatophoric dysplasia, 1 Osteogenesis imperfect and 1 VACTERL association.

In management of fetal short femurs, CT had a sensitivity of 90 %, a specificity of 99.6 %, a PPV of 90% and a NPV of 99.6%, to differentiate OCD from other etiologies: 1 achondroplasia was not diagnose by imaging but by molecular analysis, and 1 fetal bone scan showed short femurs <1 percentile with anomalies of the lumbar interpedicular distance and large hipbone, that could not eliminate an hypochondroplasia.

The association ultrasound/computed tomography made an accurate diagnosis in 70% of cases. CT provided additional evidence in 60% of the cases: in one case of Thanatophoric
dysplasia it confirmed the diagnosis (Fig.1), in 3 cases made an accurate diagnosis without ultrasound diagnosis (Fig. 2), and corrected the diagnosis in 2 cases (Fig. 3).

CT alone was better than ultrasonography to diagnose abnormalities of the spine and hipbone. Conversely, CT was less accurate for the study of hands feet and skull.

There was a statistically significant difference between the OCD and non-OCD population when short femurs were not isolated and when all long bones were shortened.

These parameters were equivalent or superior to those of the study performed by Mace et al. [8] that were on their entire cohort (67 CT scans): sensitivity 82%, specificity 91%, PPV 90% and NPV 83 %.

Scanners made for short femurs have uncovered in 60 % additional signs and in 50 % of cases changed the diagnosis, close to the results of the study performed by Miyazaki et al. [9] with a change of diagnosis in 59% (10/17) against 15% (10/67) in the study performed by Mace et al. [8].

The threshold < 1 percentile seems accurate to avoid unnecessary irradiation of the fetus having no OCD.

Normal 0 21 false false false EN-GB JA X-NONE

The disadvantages of the techniques are mainly the irradiation, which is in our study lower than the recommendations [10, 11], the motion artifacts of the fetus, and the poor analysis of bone mineralization.

Images for this section:
Fig. 1: Thanatophoric dysplasia: fetal bone scan MIP reconstruction, post-mortem X-ray: macrocrania, very short "twisted" long bones, platyspondyly, square iliac wings and medial and lateral osseous spurs, elongated narrow thorax.
Fig. 2: Asphyxiating thoracic dysplasia: fetal bone scan and post mortem X ray: narrow thorax, square iliac wings horizontal acetabular roofs, lateral osseous spurs.
Fig. 3: Chondroectodermal dysplasia: 3D ultrasound: short long bones right ectrodactyly; Fetal bone scan and post-mortem X-ray: bilateral polydactyly, L1 vertebra rostrum, square iliac wings, medial osseous spurs.
Conclusion

Our study confirms the importance of fetal bone scan in prenatal diagnosis of OCD including the indication of short femurs. A threshold < 1 percentile seems relevant to perform CT when short femurs are isolated.

Limitations:

There are several limitations of this study. First this is a retrospective study. Second there wasn't a blind study of the fetal bone scans by two radiologists, and a blind analysis of the scan from the results of the ultrasonography. Third, the short post-natal monitoring, as several OCD may reveal later, and finally the low number of OCD in our population.

Personal information

Marie Blouet M.D.
Département de radiologie Femme Enfant, Centre Hospitalier Universitaire de Caen, Pôle imagerie médicale
mailto: blouet-m@chu-caen.fr

Frédérique Belloy M.D.
Département de radiologie Femme Enfant, Centre Hospitalier Universitaire de Caen, Pôle imagerie médicale
mailto: belloy-f@chu-caen.fr

Guillaume Benoist M.D PhD
Département d'obstétrique, Gynécoologie et Médecine de la reproduction Centre Hospitalier Universitaire de Caen, Pôle Femmes-Enfants,
mailto: benoist-gu@chu-caen.fr

Jean-Pierre Pelage
Département de radiologie, Centre Hospitalier Universitaire de Caen, Pôle imagerie médicale
References

Scanner osseux foetal 3D : technique, indications, limites.

Suspected fetal skeletal malformations or bone diseases: how to explore.

Prenatal diagnosis of fetal skeletal dysplasias by combining two-dimensional and three-dimensional ultrasound and intrauterine three-dimensional helical computer tomography.

Antenatal detection of skeletal dysplasias.

Prenatal sonographic diagnosis of skeletal dysplasias. A report of 47 cases.

Accuracy of prenatal diagnosis and prediction of lethality for fetal skeletal dysplasias.
Prenat Diagn 2011; 31: 515-518.

Intérêt du TDM 3D osseux dans le diagnostic prénatal des ostéochondrodysplasies.
[en ligne]
Thése d'exercice : Médecine : Paris Descartes
Prenatal diagnosis of fetal skeletal dysplasia with 3D CT.

Guide des Procédures Radiologiques : Critères de Qualité et Optimisation des doses. Scannographie multicoupes de contenu utérin. [en ligne]
http://eassa.cordo.pagesperso-orange.fr/SFROPRI/index.htm
(consulté le 5/07/2013).

Bew ICRP recommendations, review.
Normal 0 21 false false false EN-GB JA X-NONE