The parapharyngeal space: Review of the anatomy and pathologic conditions.

Poster No.: C-2264
Congress: ECR 2015
Type: Educational Exhibit
Authors: R. Contreras Chacon, D. B. García Figueredo, M. Cuadrado, S. Bolivar, J. F. Madureira Cordeiro, X. Pruna; Granollers/ES

Keywords: Pathology, Neoplasia, Abscess, eLearning, Structured reporting, Education, MR, CT-Angiography, CT, Salivary glands, Oncology, Head and neck

DOI: 10.1594/ecr2015/C-2264

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Learning objectives

1. To review the anatomy of parapharyngeal space (PPS), as well as the imaging features of the pathologic conditions that can be found in these space.

2. Recognize some forms of displacement of PPS fat that are essential for accurate diagnosis and appropriate treatment of pathology arising in this region.

3. Know the different differential diagnostics of PPS lesions and their imaging features.

Background

The PPS is centrally located and surrounded by other neck spaces from all sides.

The importance of the PPS lies in its relationship with the other spaces of the neck. The masticator and parotid spaces are located laterally, the pharyngeal mucosal space is located medially, and the retropharyngeal space is located posteromedially. The fascia from the styloid process to the tensor veli palatini divides the PPS into an anteromedial compartment (prestyloid) and a posterolateral (poststyloid) compartment. The contents of each compartment are crucial for a correct diagnosis.

Findings and procedure details

Anatomy of the PPS Fig. 1 on page 9

The PPS extends as an inverted pyramid from the base of the skull superiorly, to the hyoid bone inferiorly. The PPS is surrounded by four key spaces (PMS, RPS, MS, PS) of the suprahypoid neck (SHN).

Anatomic boundaries of the PPS:
- **Superior**: The temporal bone lateral to the attachment of the pharyngobasilar fascia and medial to the foramen ovale and foramen spinosum. None of the skull base foramina open within the boundaries of the PPS.

- **Inferior**: The greater cornu of hyoid bone and the posterior belly of the digastric muscle. The PPS is continuous with the posterior aspect of the submandibular space (SMS) at this level.

- **Medial**: The buccopharyngeal fascia which covers the pharyngobasilar fascia and constrictor muscles. The PMS lies medial to the PPS and the RPS lies posteromedial to the PPS.

- **Lateral**: The fascia overlying the pterygoid muscles (MS) and the sphenomandibular ligament. The PPS communicates laterally with the PS through the stylomandibular tunnel.

- **Anterior**: The pterygomandibular raphae which extends from the medial pterygoid plate to the mylohyoid line on the lingual surface of the mandible.

- **Posterior**: The tensor-vascular-styloid fascia (TVS) overlying the tensor veli palatini (TVP) muscle extends from the medial pterygoid plate to the styloid process. It subdivides the PPS into the prestyloid and retrostyloid compartments. Some authors describe the retrostyloid PPS separately as the carotid space.

Compartments: PPS is divided into two compartments: Prestyloid and poststyloid, separated by the styloid process, tensor veli palatini muscle and its fascia.

Prestyloid PPS

Patients typically present with a mass in the lateral oropharynx, displacing the tonsil medially

The prestyloid PPS is bordered anterolaterally by the medial pterygoid muscle, and posterolaterally by the deep lobe of the parotid gland. It extends from the hyoid bone inferiorly, to the skull base superiorly and contains mainly fat.

Contains: fat, the internal maxillary and ascending pharyngeal artery, pterygoid venous plexus and may contain ectopic salivary gland tissue.

Poststyloid PPS
Patients typically present with a mass extending into the upper lateral neck in the lateral oro- or nasopharynx, or with dysfunction of cranial nerves IX-XII, or Horner’ syndrome.

The poststyloid PPS is confined medially by the pharyngobasilar fascia above, and the superior constrictor muscle of the pharynx. It contains the internal carotid artery and the internal jugular vein, as well as the lower cranial nerves IX -XII, and the sympathetic trunk. Unlike prestyloid masses, poststyloid tumours typically displace the PPS fat anterolaterally.

The most commonly encountered masses include carotid body tumours, or other paragangliomas eg of the vagus nerve and sympathetic trunk, and schwannomas.

Contains: the internal carotid artery (ICA), internal jugular vein (IJV), cranial nerves IX-X-XI-XII and the sympathetic plexus. Lymph nodes of the deep cervical chain are found only below the level of the posterior belly of the digastric muscle.

Radiological anatomy of the PPS Fig. 2 on page 9

The fat-filled PPS is well appreciated on both axial and coronal CT and MR images. The PPS appears hypodense with fat attenuation on CT images and hyperintense on T1W MR images. In normal circumstances, the PPS should look symmetrical on both sides.

MRI is often preferred over CT in the evaluation of PPS pathology because of its superior contrast resolution.

In the axial plane, the prestyloid PPS is seen as a triangular fat-fillled space widest at the level of the soft palate. The pharyngobasilar may be seen on MRI as a hypointense line outlining the pharyngeal mucosa.

The TVS cannot be routinely identified on MRI. Its course can be traced by drawing an imaginary line from the TVP muscle upto the styloid process.

The lateral fascial border of the PPS is not identifiable on MRI. Its cranial attachment lies just medial to the foramen ovale and the exiting mandibular nerve.

The ICA and IJV appear as flow voids on T1W and T2W MR images, just medial to the styloid process.

Clinical and diagnostic approach to PPS lesions:
Since the PPS has relatively few internal structures, primary lesions of the PPS are rare. The PPS is more commonly displaced or infiltrated by lesions arising in the surrounding spaces.

Small tumours of the PPS may be incidental findings whereas large tumors may cause dysphagia, ear fullness, jaw pain and cranial nerve palsy. The deep location of these tumours may hinder their clinical evaluation and may lead to delay in diagnosis. Large lesions may cause internal bulging of the naso/oro-pharyngeal wall or swelling in the parotid region or in the submandibular region.

The clinician as well as the radiologist must be aware of the fact that the cranio-caudal extent of the PPS can make it function as an 'elevator shaft' through which infection or tumour from adjacent spaces can spread to the skull base.

Displacement patterns of PPS fat Fig. 3 on page 10

The PPS is surrounded by four key spaces (PMS, RPS, MS, PS) of the suprathyroid neck (SHN). The direction of displacement of the PPS by a mass lesion arising from a surrounding space can be a key finding in determining its space of origin.

PS mass lesion pushes PPS anteromedially.
MS mass lesion pushes PPS posteromedially.
PMS mass lesion pushes PPS laterally.
Lateral RPS mass pushes PPS anterolaterally.
Retrostyloid PPS mass pushes prestyloid PPS anteriorly.

Pathology of PPS

PPS is one of potential facial planes of head and neck that may become involved by various pathological processes: infectious, inflammatory, and neoplastic. Neoplastic tumours seen at the PPS represent less than 1% of all head and neck tumours. Both benign and malignant tumors may arise from any structure contained within the PPS where 70-80% appears to be benign and 20-30% appears to be malignant. Most of the tumours arising from the posterior compartment are of neurogenic origin while salivary gland tumours are predisposing the anterior compartment.
Most PPS tumors are of salivary gland tumors, neurogenic tumors especially Schwannomas and paragangliomas, and lymphoreticular lesions which comprise nearly 80% of PPS tumors. The most common tumors arising in the PPS are of salivary gland origin, which account for 40-50% of PPS lesions and are located in the pre-styloid PPS. These tumors may originate either in deep lobe of parotid gland, in ectopic salivary gland nests, or in minor salivary glands of the lateral pharyngeal wall. The most common pre-styloid PPS lesion is "pleomorphic adenoma," which represents 80-90% of salivary neoplasms in the PPS.

Pre-styloid PPS lesions

1) Salivary gland tumours:

These constitute the majority of neoplasms in the pre-styloid PPS. These tumours arise from ectopic salivary gland rests in the pre-styloid PPS.

However, more commonly they extend from the deep lobe of the parotid and extend exophytically into the PPS.

Pleomorphic adenoma/benign mixed tumour (FIG 4) is the commonest salivary gland tumour. Malignant tumour like mucoepidermoid carcinoma and adenoid cystic carcinoma are uncommon. A tumour is considered to be primary to the PPS if it is completely surrounded by PPS fat. A deep parotid lobe tumour often appears dumbellishaped. It is connected to the deep lobe of the parotid gland and is seen to widen the stylomandibular tunnel. It pushes the PPS fat anteromedially. Pleomorphic adenoma usually appears as a well-circumscribed, heterogeneous mass on CT. On MRI, it appears hypointense on T1W images with marked hyperintensity on T2W MR images. Heterogeneous post contrast enhancement may be seen. Haemorrhage, necrosis and calcifications may occur. Complete surgical removal is the treatment of choice for a pleomorphic adenoma in view of high tendency for recurrence and the less common but likely possibility of malignant conversion (malignant mixed tumour).

2) Lipomas (FIG 5):

Primary lipomas of the PPS are rare and liposarcomas rarer still. Some of lipomas may arise from the parotid space and extend into the PPS. Lipomas usually appear as well-circumscribed lesions within the pre-styloid
PPS. Large lipomas may cause internal bulging of the lateral pharyngeal wall. They show fat attenuation on CT and hyperintense signal on TIW MR images. Focal enhancement within a lipoma is suspicious for malignancy ie liposarcoma.

3) Branchial cleft cyst:

The prestyloid PPS is a likely but rare location for an atypical 2nd branchial cleft cyst (BCC). An uncomplicated BCC usually appears well circumscribed with thin walls and fluid contents on CT and MRI. Thickened irregular walls may be due to infection.

In the absence of infection, an atypical cystic lesion in the PPS may be suspicious for metastatic necrotic adenopathy from papillary carcinoma of the thyroid or squamous cell carcinoma of the pharyngeal mucosal space.

Post-styloid PPS lesions:

1) Neurogenic tumours:

Neurogenic tumours (schwannomas and neurofibromas) are the most common primary tumours of the retrostyloid PPS. Retrostyloid tumours typically displace the styloid process anteriorly, ICA anteromedially and the prestyloid PPS anteriorly.

Schwannomas commonly arise from the vagus nerve. CT shows a hypodense fusiform, well-circumscribed mass with mild homogeneous enhancement. Schwannomas often appear hyperintense on T2W MR images. Heterogeneous signal on T1W and T2W images may be due to cystic degeneration or intralesional haemorrhage. Schwannomas are relatively hypovascular lesions (which often helps to differentiate them from paragangliomas). Malignant transformation is rare.

The imaging features of a solitary neurofibroma overlap those of a schwannoma. Neurofibromas tend to be more hypodense on CT and less enhanced as compared to schwannomas on post contrast CT and MR images. Neurofibromas may show the classical 'target-sign' on axial T2W.

2) Paragangliomas:(FIG 6)

Paragangliomas/ glomus tumours in the head and neck arise from chemoreceptor cells located at three sites; at the nodose ganglion of the vagus at the skull base (vagal paraganglioma), at the carotid bifurcation (carotid paraganglioma/ carotid body tumour) and at the level of the jugular foramen (jugular paraganglioma).
Glomus tumours are typically hypervascular and show marked post contrast enhancement on both CT and MRI. A 'salt-pepper' appearance is common on T1W MR images due to focal areas of haemorrhage and tortuous vessels causing flow voids. Carotid body tumours typically splay the internal and external carotid artery (ECA) away from each other.

Conventional angiography helps to confirm the diagnosis and may be required for pre-operative embolisation

Secondary lesions of the PPS:

- The PPS is often secondarily involved by tumour and infection arising in the PMS, MS and PS. Aggressive masticator space neoplasms like sarcomas and PMS neoplasms like squamous cell carcinomas and lymphomas readily infiltrate the PPS .(FIG 8-11 and FIG 15-17)

- Secondary involvement of the PPS is often seen in benign muticompartmental lesions like lymphangioma and hemangioma.

- Parapharyngeal abscess is rare in the modern era of effective antibiotics. The most common scenario is post acute tonsillitis with extension of a peritonsillar abscess through the buccopharyngeal fascia into the PPS (FIG 12-14)

The exact extension of the abscess into the adjacent spaces must be described so as to guide effective drainage.

Key Diagnostic Information

One should determine the following before embarking on surgery:

- **Benign / malignant:** This is generally determined by FNAC. The needle biopsy may be done transcervically or transorally, and one should not be concerned about puncturing the internal carotid artery with a small needle

- **Vascularity:** A paraganglioma may be suspected on CT or MRI, and confirmed angiographically. Vascular tumours may require preoperative embolisation, and proximal vascular control, or one may elect to treat it with radiation therapy

- **Prestyloid / poststyloid:** This is determined clinically and radiologically with CT / MRI as indicated previously. This information permits narrowing down of the differential
diagnosis, planning the best surgical approach, and preoperative counselling of possible sequelae.

Images for this section:

Fig. 1

Axial schematic nasopharynx level shows that parapharyngeal space is divided into prestyloid (yellow low) and postsyloid (bright yellow) compartments by tensor-vascular-styloid fascia (green line) connecting tensor veli palatini muscle with styloid process.
A) Radiological anatomy of parapharyngeal space is divided into prestyloid (yellow low) and poststyloid (pink) compartment by tensor - vascular - styloid fascia (green line) connecting tensor veli palatini muscle with styloid process (brown).
B) An inverted pyramid-shaped along the pharynx on either side extending from sullk base up to the level of angle mandible (marked by the yellow line).
PPS ANATOMY

Displacement patterns of PPS fat
PS mass lesion pushes PPS anteromedially.
MS mass lesion pushes PPS posteromedially.
PMS mass lesion pushes PPS laterally.
Lateral RPS mass pushes PPS anterolaterally.
Retrostyloid PPS mass pushes prestyloid PPS anteriorly.

PPS: Parapharyngeal space.
PMS: Pharyngeal mucosa space.
MS: Masticator space.
PS: Parotid space.
RPS: Retropharyngeal space.
PVS: Pre vertebral space.

Fig. 3
NEOPLASTIC LESIONS

Fig. 4

A) Axial T1W MR image in a patient with a pleomorphic adenoma arising from parotid salivary gland in the right PPS. The tumour (asterisk) is isointense to muscle with a hyperintense focus within, likely due to haemorrhage (arrow).

B,C,D) Axial and coronal T1W/STIR/gadolinium MR image shows inhomogeneously enhancing mass of pre-styloid PPS displacing fat anteromedially.

E) Dynamic gallium enhancement

F) Ultrasound-guided biopsy of deep lobe parotid the same patient
Fig. 5

Lymphoma infiltrative in 61 year-old woman

A,B) Axial contrast-enhanced CT scan shows an expansive, well-defined, inhomogeneously hypoattenuated mass occupying the parotid masseteric carotid region and extending deeply toward the left parapharyngeal space. The parotid gland is compressed and displaced posteriorly. No contrast enhancement is evident. Linear densities within the lipomatous region are consistent with fibrous materials (red arrow).
VASCULARITY LESIONS

Aural contrast-enhanced CT

Coronal contrast-enhanced CT

Vagal paraganglioma in 67-year-old woman with asymptomatic right suprachordial neck mass.

A, B) Hypervascular mass that bulges right wall of nasopharynx with displacement of the parapharyngeal fat anteriorly (arrowhead). The styloid processes are indicated by red arrow (A). Normal PPS are indicated by asterisk (A, B, C and E).

D, E) Heterogeneous contrast enhancement that obliteration of right fat PPS and anterior displacement of ICA.

Fig. 6
Paraganglioma in 42 year-old man with right submandibular area swelling.

(A) Heterogeneous enhancing mass within the right carotid space that extending superiorly. Asimetric obliteration of right fat PPS and anteromedial displacement of ICA (green arrow). The styloid processes are indicated by red arrow (B and C).
NEOPLASTIC LESIONS

Fig. 8

Minor salivary gland tumor in 76 year-old woman.
A,C) Mass of irregular peripheral enhancement with central hypodense in left PPS and MS.
B) Multiloculated heterogeneous enhanced cystic mass in the left pre styloid PPS (asterisk)
D) CT guide biopsy anterior to the mandibular condyle.
Tonsillar lymphoma in 7 year-old woman with antecedent diagnosis of classical nodal mantle cell lymphoma two years ago.
A,B,C) Enhancing mass tonsilar nigh extending into the post-styloid PPS displacing internal carotid artery and jugular vein to its posterolateral side (red arrow). Normal right PPS is shown for comparison (green arrow)
Fig. 10

Malignant peripheral nerve sheath tumor arising from trigeminal nerve an facial nerve in 57 year-old man with Parotid neoplasm with right tinnitus, hearing disturbance and facial paresis.

A,B) CT for ears with soft tissue mass within the right facial nerve canal and right foramen ovale suggesting its perineural extension.

D) Shows tumor is slightly hyperintense to muscle (asterisk)

C,E) Axial and coronal enhanced T1W fat sat shows tumor extends into the eustachian tube, foramen ovale and prestyloid PPS (red arrow)
Cavum neoplasme infiltrative in 75 year-old woman.

A, B, C) showed carcinoma cell had infiltrated cavum and left PPS (Red arrow)

Fig. 11
Ludwig's angina in a 42-year-old man with oral infection spreads into the neck affecting carotid space and parapharyngeal space (post-styloid compartment).

A, C) Axial contrast CT neck shows fluid collection (asterisk) with air and a well-defined rim without enhancement.

B) Dental caries in the same patient as the beginning of affection (red arrow).

C) The styloid processes are indicated by green arrow.

D) Sagittal reconstruction contrast CT neck shows a rim-enhancing collection (asterisk) with the red arrow indicating a region of internal jugular vein compression with subsequent thrombophlebitis and pulmonary septic emboli in the same patient (F). It is characteristic of Lemier Syndrome.
Fig. 13

Periton silar abscess in 78 year-old man with left submandibular swelling and neck pain.
A-B) Mass of irregular peripheral enhancement with central hypodense in left periton silar region.
D-E) Show cranial extention of the lesion.
C) Normal right PPS is shown for comparison (red arrow).
INFECCIOUS OR INFLAMMATORY LESIONS

33-year-old man with plunging ranula.

A) Fluid collection with hyperintense periphery in the right sublingual space, with adjacent inflammatory changes primarily affecting of right fat PPS (pre-styloid compartment).
B,C) Show comparative contra lateral left PPS normal (red arrow).
D) US comparative contra lateral sublingual. Collection cystic sublingual right (asterisk).

Fig. 14
73-year-old woman with known low-grade lymphoma and swelling at the angle of the mandible.

A,B,D) Axial contrast-enhanced CT was observed hyperdense mass in the right parotid gland and orofarngeal with infiltration of PPS (pre and post-styloid compartem) and carotid space.

C) Coronal contrast-enhanced CT reformation show great extension of the lesion affecting PS, PPS, PMS and CS.

Fig. 15
71-year-old man with metastatic squamous carcinoma of the tongue.

C) Mass of irregular peripheral enhancement with central hypodense (asterisk), extending along the floor of the mouth posteriorly to infiltrate to the left PPS, PMS, PS, CS, skin and subcutaneous cellular tissue. (PPS: Parapharyngeal space, PMS: Pharyngeal mucosa space, MS: Masticator space, PS: Parotid space)
The styloid processes are indicated by red arrow (A).
Fig. 17

NEOPLASTIC LESIONS

Coronal contrast-enhanced CT

A, B, C: Heterogeneous enhancing mass within the right tonsillar and parotid region extending to pre-styloid compartment of PPS and PS

A: Normal left PPS is shown for comparison (green arrow)
Conclusion

Clinical examination of PPS lesions is limited by its inaccessible location; hence the diagnosis is completely dependent on imaging studies; CT and MRI could provide the critical information, which were important to operation schemes.

Personal information

References