Fetal dose from emergency CT examination: fetal simulation and dose measurements with the use of a female humanoid phantom

Poster No.: C-0528
Congress: ECR 2015
Type: Scientific Exhibit
Authors: C. S. Y. Lo, M. W. M. Law, F. Cho, D. Pang, P. Cheng, L. Yip, W. W. M. Lam; Hong Kong/HK
Keywords: Radiation physics, Foetal imaging, CT, Radiation effects, Radiation safety, Technical aspects, Dissection, Acute
DOI: 10.1594/ecr2015/C-0528

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited. You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Aims and objectives

Pregnant patients may experience non-obstetrical emergencies over the course of pregnancy, and CT remains essential in the emergent setting for pregnant population [1]. For pregnant women undergoing abdominopelvic CT, the concern of consequent cancer risk is particularly relevant because the fetus, with a greater sensitivity to radiation than the mother, is also directly exposed to radiation [1-3].

Most published estimates of fetal dose from radiological examinations have relied on Monte Carlo computation [3] or on measurements with thermoluminescent dosimeters for specific clinical application [4] that requires special facility and expertise [5]. We report a simple fetal simulation technique to perform fetal dose measurements for a clinical case of a 38 year old previously healthy pregnant woman who was referred to our institution at 36 weeks gestation for acute chest pain. Investigations were immediately performed to ascertain the cause of the patient's pain. Troponin I was increased to 1.12. ECG showed T-wave inversion in leads III and avF. Urgent bedside echocardiogram showed suspected aortic dissection. CT imaging was requested to confirm the echocardiogram findings and to delineate the extent of dissection. Referring clinicians would then decide their therapeutic decision, whether to treat with medical or surgical means, based on the level of dissection from the CT findings. General knowledge of risks and benefits due to the radiation dose delivered to the fetus was informed to the patient. Fetal dose from a single acquisition abdominopelvic CT study has been reported to have an average of 25 mGy [1]. An urgent CT scan of thorax-abdominopelvis was then performed and a Type A aortic dissection extending from the dilated aortic root down to the bifurcation was verified. The patient underwent emergency Caesarean section, Bentall operation and ascending aortic interposition graft repair. The child was delivered successfully with normal Apgar scores and the mother was recovered uneventfully. The child has been growing well with normal parameters. Retrospective fetal irradiation dose was measured with the use of phantom and estimated associated risks were estimated as information to the mother and as reference to monitor the growth of the newborn child.

Methods and materials

A standard reference female humanoid of weight 70 kg (The Phantom Laboratory, New York, USA) was used as the mother in this retrospective measurement study. To simulate a fetus of gestational age of 36 weeks, we used a cylindrical phantom (a
CTDI head phantom commonly used for CT quality control work) of weight about 3 kg to mimic the fetal body. The CTDI cylinder was then embedded onto the humanoid abdominal region to closely match with the patient's maternal parameters. Layers of tissue-equivalent beeswax (available from most radiation oncology department moulding laboratory) were moulded around the humanoid abdominal region to simulate the maternal dimensions (Figure 1). The finished dimensions were: maternal curvature 42 cm, maternal anteroposterior thickness 34 cm, total maternal weight 79 kg, all of which were comparable to reported late stage gestation dimensions [6].

The simulated fetal body had a series of holes of length 10 cm with each hole located at each quadrant position and at the center of the CTDI phantom. A calibrated 10 cm pencil chamber was then inserted into each hole for dose measurement using the patient irradiation CT protocol. By averaging the doses measured at these five positions, the average irradiated dose to the simulated fetal body was obtained.

Figure 2 shows the patient CT scout image (Toshiba Aquilion 320 rows CT, Otawara, Japan). CT parameters were 120 kVp, automatic mA with manually adjusted tube current within the fetal region [7]. The same CT beam parameters were used to irradiate the simulated pregnant humanoid. For exposure to a newborn, the lifetime attributable risk of childhood cancer induction was estimated with 0.4% per 10 mGy irradiation to the fetus [8].

Images for this section:
Fig. 1: Diagram showing equipment used to simulate the fetus and to measure the fetal dose. The CTDI phantom was used to simulate the fetus with the 10 cm pencil chamber inserted into the CTDI phantom to measure the irradiation dose. Layers of beeswax were then pasted onto the humanoid abdominal region to simulate the maternal curvature.
Fig. 2: Scout image of the pregnant patient indicating the CT scanning range. The same CT scanning parameters and scanning range were used for humanoid irradiation.
Results

The pregnant patient had undergone 2 identical thorax-abdominopelvis CT sets, namely pre-contrast CT scan for intramural hematoma and post-contrast CT for dissection. Figure 3 shows the image of the post-contrast CT examination, demonstrating the extensive dissection flap from dilated aorta root down to the bifurcation and the direct CT exposure to the fetus. The average dose delivered to the fetus was measured as 20 mGy for a single thorax-abdominopelvic CT acquisition. Therefore, the total irradiation CT dose to the fetus was 40 mGy because pre- and post-contrast scans were used.

The lifetime attributable risk of childhood cancer induction was estimated as 1.6% due to the CT irradiation.

Osei and Darko recently presented a multi-national study in that average fetal absorbed doses for pelvis and abdomen under CT irradiation were 10.6 mGy (range: 1.3-17 mGy) and 2 mGy (range: 1.0-3.7 mGy) respectively without details in gestational age [9]. Goldberg-Stein et al. retrospectively analyzed data from a 7-years database and identified 86 pregnant patients from 180,000 abdominopelvic examinations [2]. Based on each identified pregnant patient CT parameters, the authors used Monte Carlo technique applied to a mathematical phantom which was not specifically designed for pregnant woman in order to calculate the fetal absorbed dose. Nevertheless it was reported an average fetal dose of 24.8 mGy (range: 6.7-56 mGy) for those identified pregnant patients undergone a single acquisition abdominopelvis CT examination. Lazarus et al. also reported a mean fetal dose of 17 mGy (range: 8-44 mGy) from a review of 10 years database [10]. Our result of 20 mGy per thorax-abdominopelvis CT acquisition was in good accord with multi-national survey and with large database reviews for abdominopelvic CT scan. It should note that our dose measurement referred to thorax-abdminopelvic region that would result in slight increase in fetal absorbed dose when compared with that from an abdominopelvic scan due to increase in internal scatter dose from the thorax region irradiation.

The fetal irradiated dose of 40 mGy, as resulted from the emergency CT to diagnose the patient’s aortic dissection, was measured to be well below the safety limit of 100 mGy. Lethal effects will be very infrequent for doses under 100 mGy and birth malformation fetal exposure well below 100 mGy is not expected [11]. Therefore, we would not expect any
birth defects to the newborn. Stochastic effect of childhood cancer risk induction (0.4% per 10 mGy irradiation) was the main concern [8]. Exposure of 40 mGy increases the lifetime risk of developing cancer to the newborn child by 1.6%. In other words, there is a better than 98% likelihood that the child will be unaffected by the irradiation. The cancer risk is low of the order < 2% for emergency CT scan through thorax-abdominopelvis region, indicating that such high dose examination may be performed to pregnant patients who have medically necessary indication. The radiologist performing the emergency CT must be aware of any prior radiological examinations in the abdominopelvis region to the pregnant patient in order to have an update on the risk and benefit consideration.

Images for this section:

Fig. 3: CT image of the pregnant patient shows that dissection flap was observed from the dilated aortic root down to the bifurcation. The proximal part was close to the aortic valve. The fetus was directly exposed.
Conclusion

By using readily available equipment in a radiology department, fetal simulation and then dose measurements can be efficiently performed with moulding technique. Such simulation and measurement are efficient to perform for varying clinical applications and fetal dose can be prepared as a look-up table for various gestational stage and for common maternal dimensions as a preparedness to cope with the increasing trend in pregnant patient population with emergency presentation [10]. One also has to consider if the mother has had any high dose radiological examinations prior to the emergency CT to provide an update in risk and benefit analysis as information to the pregnant patient.

Personal information

Christine Lo, Martin Law, Francis Cho, Dominic Pang, Patricia Cheng, Lawrance Yip, Wendy Lam

Department of Radiology, Queen Mary Hospital, Hong Kong, 102 Pokfulam Road, Hong Kong

References

