Comparison between 0.1 mmol/kg of gadoterate meglumine and 0.075 of gadobenate dimeglumine in brain MRI

Poster No.: C-0895
Congress: ECR 2014
Type: Scientific Exhibit
Authors: K. Khouri Chalouhi, G. D. E. Papini, M. Bandirali, L. M. Sconfienza, G. Di Leo, F. Sardanelli; San Donato Milanese/IT
Keywords: Neuroradiology brain, MR, Contrast agent-other
DOI: 10.1594/ecr2014/C-0895

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Aims and objectives

To compare a reduced dose (RD) of a high-relaxivity contrast-material (CM) 0.075 mmol/kg of gadobenate dimeglumine (RD-Gd-BOPTA) with a single dose (SD) of 0.1 mmol/kg of gadoterate meglumine (SD-Gd-DOTA), for 1.5 T brain MRI.

Methods and materials

CM changed from SD-Gd-DOTA to RD-Gd-BOPTA since March 2011. Quantitative analysis was performed on 32 patients (54±16 years, mean ± standard deviation) in two subsequent occasions (median interval: 10 months): first using SD-Gd-DOTA, second using RD-Gd-BOPTA. Signal-to-noise ratio (SNR) was obtained for the same anatomic structures on contrast-enhanced T1-weighted images: right and left transverse sinuses; right and left internal carotid arteries at the infra-petrosal level; right and left parotid glands; stable enhancing intracranial lesions (whenever present). Moreover, 102 patients (age 51±19 years) studied with SD-Gd-DOTA were compared with 99 patients (age 54±19) studied with RD-Gd-BOPTA: two radiologists (R1, R2) blinded to contrast regimen, assigned a 0-to-3 point score based on the contrast enhancement (CE). Wilcoxon, #2 and # statistics were used.

Results

At quantitative analysis, median SNR resulted at least equal or even superior using RD-Gd-BOPTA (68-94) than using SD-Gd-DOTA (54-89) [Table 1]. At qualitative analysis, RD-Gd-BOPTA resulted with higher CE if compared to SD-Gd-DOTA (p<0.001), score 3 (optimal CE) being obtained in 50% of SD-Gd-DOTA series and in 80% of RD-Gd-BOPTA series according to R1, and in 38% and 64% according to R2, respectively (the inter-reader reproducibility was substantial: Cohen k=0.717) [Table 2]. [Fig 1 and 2].

Images for this section:
Table 1: Paired comparison between the signal-to-noise ratio obtained using 0.075 mmol/kg of gadobenate dimeglumine (Gd-BOPTA) and 0.1 mmol/kg of gadoterate meglumine (Gd-DOTA)

<table>
<thead>
<tr>
<th></th>
<th>Venous Sinuses</th>
<th>ICA</th>
<th>Parotid Gland</th>
<th>Lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Right</td>
<td>Left</td>
<td>Right</td>
<td>Left</td>
</tr>
<tr>
<td>Gd-DOTA</td>
<td>83</td>
<td>83</td>
<td>87</td>
<td>89</td>
</tr>
<tr>
<td>Gd-BOPTA</td>
<td>93</td>
<td>92</td>
<td>92</td>
<td>94</td>
</tr>
<tr>
<td>p</td>
<td>0.009</td>
<td>0.037</td>
<td>0.355</td>
<td>0.556</td>
</tr>
</tbody>
</table>

Table 2: Comparison of the qualitative score obtained using the two contrast regimens in two independent patient groups

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gd-DOTA</td>
<td>Gd-BOPTA</td>
</tr>
<tr>
<td>Sufficient</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Good</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>Optimal</td>
<td>51</td>
<td>79</td>
</tr>
<tr>
<td>p</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>
Fig. 1: Axial cerebral MRI images T1 weighted after administration of Gd-DOTA (left) and Gd-BOPTA (right). It is remarkable the difference between the contrast enhancement of the meningioma with the two different contrast media.

Fig. 2: Axial cerebral MRI images T1 weighted after administration of Gd-DOTA (left) and Gd-BOPTA (right). Area of altered signal intensity, probably demielinyzing, located on the roof of pons with extention to the base of the 4th ventricle.
Conclusion

In consideration of its two-fold higher T1 relaxivity compared with the standard contrast agents, Gd-BOPTA has been first introduced in radiological practice as a contrast medium for the study of the liver. G. Schneider et al. in their study *Low dose gadobenate dimeglumine versus standard dose gadopentetate dimeglumine for contrast enhanced magnetic resonance of the liver*, demonstrated that Gd-BOPTA administered at the dose of 0.05 mmol/kg gave a diagnostic information at least equal to the one given by a standard contrast agent as Gadopentetate dimeglumine administered at 0.1 mmol/kg [1]. Thanks to its characteristics Gd-BOPTA entered in the neuroradiologic practice, and also in this scientific field many reports in literature have been published [2, 3, 4, 5, 6]. According to Colosimo et al. from the comparison between Gd-DOTA and Gd-BOPTA both administered at the dose of 0.1 mmol/kg in 23 patients with intra-axial tumours, resulted for Gd-BOPTA a significant preference expressed by the readers for the lesion-to-brain contrast, lesion delineation, internal lesion structure, and the overall image [6].

In our study we compared the contrast enhancement in brain MRI obtained using 0.075 mmol/kg of Gd-BOPTA with that obtained using 0.1 mmol/kg of Gd-DOTA.

Regarding the *quantitative analysis*, resulted a contrast enhancement at least equal between the two contrast administration regimens. Nay, even if not statistically significative, the difference was in favour of Gd-BOPTA.

Concerning the *qualitative analysis*, Gd-BOPTA resulted to have a superior contrast enhancement if compared to Gd-DOTA. As a matter of fact, the percentage of examinations evaluated as "with optimal contrast enhancement" moved from 50% for Gd-DOTA to 80% for Gd-BOPTA according to the R1, and from 38% to 64% respectively according to R2.

In conclusion, this study shows that for the routinary neuroradiologic applications, the administration of 0.075 mmol/kg of Gd-BOPTA is at least equal to the administration of 0.1 mmol/kg of Gd-DOTA.

Personal information

References

1. Schneider G, Maas R, Schultze Kool L, Rummeny E. Low dose gadobenate dimeglumine versus standard dose gadopentetate dimeglumine for contrast-
enhanced magnetic resonance imaging of the liver. Investigative Radiology 2003 Nov; 85-94.

