Mono-energetic display improves depiction of chronic myocardial infarction on delayed phase cardiac dual-energy CT

Poster No.: C-1475
Congress: ECR 2013
Type: Scientific Exhibit
Authors: J. L. Wichmann, R. Arbaciauskaite, J. M. Kerl, M. Doss, T. J. Vogl, R. Bauer; Frankfurt am Main/DE
Keywords: Cardiac, CT, MR, Diagnostic procedure, Ischemia / Infarction
DOI: 10.1594/ecr2013/C-1475

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

Dual-energy CT (DECT) promises improved tissue contrast compared to standard CT. Dedicated post-processing enables the selective monoenergetic display of grayscale images at a certain energy level (keV), also close to the k-edge of iodine. We compared four different monoenergetic settings in terms of overall image quality and signal- and contrast-to-noise ratio (SNR, CNR) to standard linear blending for the detection of chronic myocardial infarction on delayed phase cardiac DECT.

Methods and Materials

20 patients underwent delayed phase cardiac DECT followed by 3 T late Gadolinium enhancement (LGE) MRI as reference standard. DECT images were reconstructed with the standard linear blending setting (M0.6) with 60% 100 kVp and 40% 140kVp +SN information to generate a virtual 120 kVp series. Further, selective monoenergetic spectral images at 40 keV, 60 keV, 80 keV and 100 keV were generated. Signal and standard deviation of late iodine enhancement (LIE) areas, healthy myocardium and the left ventricular cavity were measured and SNR and CNR were calculated. Image quality in terms of the best depiction of LIE areas was rated by two independent radiologists blinded to the image reconstruction method.

Fig. 1: Overview of measured regions of interest.

References: Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University - Frankfurt am Main/DE
Results

65 segments in 14 patients showed LGE. The corresponding signal from LIE was highest in the 40 keV series (228 HU) which is closest to the k-edge of iodine (33 keV), but also noise was highest in this series (48 HU). This resulted in the lowest SNR (4.76) and CNR (2.30) of all series. 80 keV reconstructions revealed the highest SNR (15.34) and CNR (4.03) followed by M0.6 (SNR 14.45; CNR 3.90). On subjective image quality rating both radiologists preferred the 80 keV reconstruction in 10/20 cases followed by M0.6 in 4/20 cases. In 6 cases one observer voted for 80 keV whereas the other one preferred the standard linear blending M0.6 series.

Characteristic

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ± SD, y [minimum, maximum]</td>
<td>97 ± 5 [55, 75]</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>20 (100)</td>
</tr>
<tr>
<td>Body mass index ± SD, kg/m² [minimum, maximum]</td>
<td>27 ± 3 [23, 30]</td>
</tr>
<tr>
<td>Known prior infarction, n (%)</td>
<td>7 (35)</td>
</tr>
<tr>
<td>Coronary Artery Bypasses, n (%)</td>
<td>20 (100)</td>
</tr>
<tr>
<td>Long-term #-blocker use, n (%)</td>
<td>18 (90)</td>
</tr>
<tr>
<td>Mean heart rate during exam ± SD, bpm</td>
<td>59 ± 7</td>
</tr>
</tbody>
</table>

Patient characteristics (n=20)

<table>
<thead>
<tr>
<th>Image series</th>
<th>LIE signal</th>
<th>Myocardium signal</th>
<th>SD</th>
<th>CNR</th>
<th>SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 keV</td>
<td>228</td>
<td>118</td>
<td>48</td>
<td>4.76</td>
<td>2.30</td>
</tr>
<tr>
<td>60 keV</td>
<td>120</td>
<td>78</td>
<td>15</td>
<td>8.27</td>
<td>2.91</td>
</tr>
<tr>
<td>80 keV</td>
<td>82</td>
<td>60</td>
<td>5</td>
<td>15.34</td>
<td>4.03</td>
</tr>
<tr>
<td>100 keV</td>
<td>67</td>
<td>52</td>
<td>7</td>
<td>9.19</td>
<td>2.11</td>
</tr>
<tr>
<td>M0.6</td>
<td>83</td>
<td>61</td>
<td>6</td>
<td>14.45</td>
<td>3.90</td>
</tr>
</tbody>
</table>

CT signal in areas of late iodine enhancement (LIE) and myocardium; signal standard deviation in the left ventricular cavity.
Fig. 2: Comparison of statistical results.

References: Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University - Frankfurt am Main/DE

Conclusion

Dedicated post-processing of DECT late iodine enhancement data with display of monoenergetic images at 80 keV can further improve image quality for depiction of chronic myocardial infarction. Although 40 keV images showed the strongest LIE signal as the mean energy is very close to the k-edge of iodine, image quality is deteriorated due to high image noise.
Fig. 3: Comparison of available image data for each patient.

References: Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University - Frankfurt am Main/DE

References

Personal Information

Julian L Wichmann MD, Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt am Main, Germany; docwichmann@gmail.com

Ruta Arbaciauskaite MD, Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt am Main, Germany; rutukea@yahoo.com

J Matthias Kerl MD, Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt am Main, Germany; matthias.kerl@gmail.com

Mirko Doss MD, Department of Thoracic, Cardiac and Vascular Surgery, Clinic of the Goethe University, Frankfurt am Main, Germany; mirko.doss@kgu.de

Thomas J Vogl MD, Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt am Main, Germany; T.Vogl@em.uni-frankfurt.de

Ralf W Bauer MD, Department of Diagnostic and Interventional Radiology, Clinic of the Goethe University, Frankfurt am Main, Germany; ralfwbauer@aol.com