Role of MR DWIBS sequences for the evaluation of neoplastic breast disease

Poster No.: C-1320
Congress: ECR 2013
Type: Scientific Exhibit
Authors: M. Moschetta, L. Rella, M. Telegrafo, A. Scardapane, A. A. A. Stabile Ianora, G. Angelelli; Bari/IT
Keywords: Breast, Oncology, MR, MR-Diffusion/Perfusion, Imaging sequences, Computer Applications-Detection, diagnosis, Neoplasia, Tissue characterisation
DOI: 10.1594/ecr2013/C-1320

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

To investigate the role of diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the evaluation of neoplastic breast disease.

Methods and Materials

90 patients underwent MR examination with a 1.5 T device and a dedicated 4-channel coil by using morphological STIR and TSE T2 sequences, dynamic THRIVE T1-weighted sequences after contrast material injection and DWIBS \((b_0 = 0 \text{ s/mm}^2, \ b_1 = 1000 \text{ s/mm}^2)\). DWIBS images were analyzed by two expert blinded radiologists, searching for the presence of breast lesions and calculating the relative ADC value. A value of ADC \(\leq 1.44 \times 10^{-3} \text{ mm}^2/\text{s} \) was considered suspicious for malignancy. This analysis was then compared with dynamic images and histological findings, considered as the reference standard. Sensitivity, specificity, diagnostic accuracy, positive predictive value (PPV) and negative (VPN) were calculated. The inter-observer agreement was assessed by using Cohen's kappa \((k)\) test.

Results

In 56/90 (62%) patients, DWIBS sequences indicated the presence of breast lesions, 19 (34%) with ADC values of >1.44x10\(^{-3}\) mm\(^2\)/s and 37 (66%) with ADC of \#1.44x10\(^{-3}\) mm\(^2\)/s. The comparison with the dynamic and histological examinations showed 25 malignant (Figs. 1-2) and 12 benign lesions (Fig. 3). DWIBS sequences obtained sensitivity, specificity, diagnostic accuracy, PPV and NPV values of 100, 82, 87, 68 and 100%, respectively. The agreement between the two readers was almost perfect \((k = 0.85)\).

Images for this section:
Fig. 1: Transverse DWIBS (A) and contrast-enhanced dynamic THRIVE (B) sequences from a 44-year-old patient affected by invasive ductal carcinoma. The lesion appears hyper-intense in DWIBS sequences with ADC values $< 1.44 \times 10^{-3} \text{ mm}^2/\text{s}$ and corresponding hyper-vascular inhomogeneous lesion in dynamic images.

Fig. 2: ADC map of the same case of Figure 1 (invasive ductal carcinoma) showing low ADC value in the site of lesion.
Fig. 3: Transverse T2 (A) and DWIBS (B) sequences from a 52-year-old patient. Multiple breast cysts show hyper-intensity signal in Dwibs sequences with ADC values of 1.44×10^{-3} mm2/s. Corresponding images in T2 sequences show liquid signal.
Conclusion

DWIBS sequences can be proposed in the MRI protocol for the study of the mammary gland and represent an accurate diagnostic complement, although not yet able to avoid the use of histological typing.

References

Personal Information

Marco Moschetta MD
DIM - Interdisciplinary Department of Medicine
Section of Diagnostic Imaging
University of Bari Medical School
Italy
marco.moschetta@gmail.com