Changes in renal doppler ultrasonographic parameters in patients managed with rigid ureteroscopy

Poster No.: C-0003
Congress: ECR 2013
Type: Scientific Exhibit
Authors: O. Tokgoz\(^1\), H. Tokgoz\(^1\), I. Unal\(^2\), N. Voyvoda\(^3\), I. Serifoglu\(^1\);
\(^1\)Zonguldak/TR, \(^2\)Izmir/TR, \(^3\)Kocaeli/TR
Keywords: Abdomen, Urinary Tract / Bladder, Ultrasound-Colour Doppler, Surgery, Obstruction / Occlusion
DOI: 10.1594/ecr2013/C-0003

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR’s endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys’ fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Purpose

Our primary aim in this prospective clinical study was to determine preoperative and postoperative intrarenal vascular parameters such as resistive index (RI), pulsatility index (PI), peak systolic velocity (PSV), end-diastolic velocity (EDV); measure changes on those values (#RI, #PI, #PSV and #EDV) in patients treated with URS and, compare the outcomes with the results of normal contralateral kidneys which served as controls. In addition, we aimed to determine possible parameters that could affect renal vascular resistance changes.

Methods and Materials

We prospectively studied 47 patients who underwent rigid URS. Preoperative gray-scale and doppler ultrasonography (CDUS) measurements were obtained 24 hours before URS. Similarly, postoperative CDUS measurements were done 24 hours after the operation. The degree of hydronephrosis and location of stones in the obstructed kidneys, diameters of both kidneys and thickness of renal parenchyma were evaluated with gray-scale US followed by CDUS with calculation of the intrarenal RI, PI, PSV and EDV values for each kidneys.

For statistical analyses, a commercially available software package (Statistical Package for Social Sciences, version 18.0, SPSS Inc., Chicago, Illinois, USA) was used. Categorical variables were summarized as numbers and percentages; continuous variables were given as the means and standard deviations (median, minimum and maximum, if required). Variables were compared using Student’s T and Mann-Whitney U tests depending on the data type. For the comparison of postoperative and preoperative CDUS parameters (RI, PI, PSV, EDV, #RI, #PI, #PSV and #EDV), paired samples T and Wilcoxon Signed Rank tests were used. Spearman correlation coefficient was obtained to investigate the correlation between continuous variables. Two-tailed p value of < 0.05 was accepted as statistically significant.

Results

Mean renal parenchymal thickness, renal length and width values for operated kidneys were comparable with the values for normal contralateral kidneys of which served as controls (p>0.05, student’s t test).

In Table 1, CDUS findings for each kidneys and relevant p values for each comparisons were given. Although, the p value was <0.05, the mean RI increase on normal
The change in mean RI, which was represented in current study as #RI, was only correlated with the parameters; "operative time" and "irrigation fluid volume". No
significant relationship was documented between #RI and the other parameters; age, gender, side of ureteroscopy, stone location and degree of hydronephrosis. On the other hand, none of the above parameters including operative time and irrigation fluid volume were not correlated with #PI, #PSV and #EDV values.

Images for this section:

![Renal resistive index (RI) values](image)

Fig. 1: Renal resistive index (RI) values
Fig. 2: Renal pulsatility index (PI) values
Fig. 3: Mean renal parenchymal thickness (RPT) values in operated and non-operated kidneys
Conclusion

We already know that baseline RI and changes in RI values can demonstrate altered renal perfusion before pelvicalyceal system dilation exists [1-5]. So, significant changes in RI and PI values in patients treated with URS reveal that URS operation itself is a functionally obstructing event and can cause significant increase in renal vascular resistance that may eventually lead to a decrease in renal blood flow. With the increase in operative time and irrigation fluid volume used during the operation, renal vascular resistance (RI) seems to be significantly increased. Thus, we think that it would be better for an endourologist to manage URS operations with minimum operative time available and, volume of irrigation fluid infused must be as low as possible.

References

Personal Information

Özlem Tokgöz¹
Hüsnü Tokgöz²
#Iker Ünal³
Nuray Voyvoda⁴
#smail #erifo#lu¹
Karaelmas University, School of Medicine, Departments of Radiology1 and Urology2, Zonguldak

3Izmir University, School of Medicine, Department of Biostatistics, Izmir

4Ac\#badem Kocaeli Hospital, Department of Radiology, Kocaeli, Turkey