Ultrasound diagnostic of carpal tunnel syndrome

Poster No.: P-0070
Congress: ESSR 2012
Type: Scientific Exhibit
Authors: A. Stouracova, A. Šprláková-Puková, H. Petrasova, M. Dvorak, K. Svoboda; Brno/CZ
Keywords: Musculoskeletal soft tissue, Neuroradiology peripheral nerve, Ultrasound, Audit and standards, Edema, Tissue characterisation
DOI: 10.1594/essr2012/P-0070

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slide shows and any other multimedia files are not available in the pdf version of presentations.

www.essr.org
Purpose

Carpal tunnel syndrome (CTS) is a median neuropathy, causing paresthesia, pain, numbness and other symptoms in the distribution of the median nerve, due to its compression in the carpal tunnel at the wrist. The pathophysiology is not completely understood, but compression of the median nerve running through the carpal tunnel can be considered.

Symptoms of chronic carpal tunnel syndrome include:

- Intermittent numbness of the thumb, index, long and radial half of the ring finger.
- Cold hands with warm forearms due to constriction of blood circulation in and around the carpal tunnel. Restricted blood circulation is a contributing factor to chronic CTS.
- Burning pain that radiates up the center of the forearm.
- Difficult grip the steering wheel and overall decreasing grip strength as the hand and muscles atrophy, due to pain and lower level of hand activity.
- Clumsiness with hands, routinely dropping objects or inability to make a fist.
- Loss of fine motor skills in the hand, limiting such tasks as writing, tying a shoe, working a mouse, picking up coins, etc.
- Inhibited hand and wrist movement due to pain, and numb tingling hands or tingling fingers.
- Loss of feeling or swollen-like sensations in the hand or fingers.
- Routine sleep interruption. The CTS sufferers often complain that they wake up 2 to 10 times per night due to numb tingling hands and due to pins and needles feeling. Most sufferers find it extremely annoying to be awakened constantly with tingling fingers and numb hands. In more mild cases people wake up in the morning with numb tingling hands. Without treatment mild CTS symptoms will progress to chronic sleep loss.
- Long standing CTS leads to permanent nerve damage with constant numbness, atrophy of some muscles of the thenar eminence and weakness of palmar abduction.

Most cases of carpal tunnel syndrome are of unknown causes or idiopathic. CTS can be associated with any condition that causes pressure on the median nerve at the wrist. Some common conditions that can lead to CTS include obesity, diabetes, hypothyroidism, arthritis and trauma. Other causes include pressure exerted from outside the tunnel like benign tumors such as lipomas, ganglion, and vascular malformation.
The carpal tunnel is an anatomical compartment located at the base of the palm (Fig.1). Nine flexor tendons and the median nerve (yellow) pass through the carpal tunnel, that is surrounded on three sides by the carpal bones, that form an arch. The median nerve provides feeling or sensation to the thumb, index finger, long finger, and half of the ring finger. At the level of the wrist, the median nerve supplies the muscles at the base of the thumb that allow it to abduct, or thumb opposition. The carpal tunnel is located at the middle third of the base of the palm, bounded by the bony prominence of the scaphoid tubercle and trapezium at the base of the thumb and the hamate hook that can be palpated along the axis of the ring finger.

The median nerve can be compressed by a reduce size of the canal, an increase in the size of the contents (such as the swelling of lubrication tissue around the flexor tendons) or both. Simple flexion the wrist to 90 degrees will decrease the size of the canal.

Palliative treatment for CTS includes use of night splints and corticosteroid injection. The only scientifically established disease-modifying treatment is surgery to cut the transverse carpal ligament.

Methods and Materials

In 2010-2011 we examinated 98 patients (109 median nerves) with clinical symptoms of carpal tunnel syndrome and positive electromyography and a group of healthy volunteers (50 median nerves).

Sonographic examination were performed after the electromyography by a radiologist experienced in musculosceletal sonography. Examinations were performed by using 17MHz linear transducer (Philips iU22). Subjects were seated facing the examiner. The forearms were supinated, wrist were rested on a hard flat surface and the fingers were semiextended (Fig.2). Carpal bones and the flexor retinaculum were used as a landmarks to margin the carpal tunnel. The flexor retinaculum is seen at a high-resolution sonography as a variably bowed echogenic band spans the carpus.

We assessed the echogenicity, thickness, and structure of the median nerve and noted visible causes of the compression. We also measured the cross-sectional area of the nerve at the level of entrance to the carpal tunnel.

Border value of the nerve disability area was set 10mm\(^2\) (3).

We excluded subjects in both, the CTS and control groups, who had anatomic variations of the nerve, such as high nerve branching.
Images for this section:

Fig. 2
Fig. 1: Carpal tunnel - scheme
Results

We have found, that 98 of median nerves with carpal tunnel syndrome had less echogenicity compared to healthy radial nerve and an enlargement of the median nerve proximal to the carpal tunnel. In this group the average cross-sectional area of the median nerve at the entrance to the carpal tunnel was $15.5 \pm 5.6 \text{ mm}^2$ compared to an average of $6.8 \pm 2.3 \text{ mm}^2$ in the healthy volunteers ($p > 0.00005$).

In the group of patients with carpal tunnel syndrome the area of median nerve was smaller than border value just in 4 cases. 7 cases were excluded for high branching or cicatricial changes.

In our group of patients sensitivity of high-resolution sonography was 96% and specificity 89%.

Images for this section:
Fig. 3: Median nerve - healthy volunteer

Fig. 4: Median nerve - healthy volunteer
Fig. 5: Median nerve - healthy volunteer, sagital view
Fig. 6: Median nerve - patient with carpal tunnel syndrome

Fig. 7: Median nerve - patient with carpal tunnel syndrome, sagittal view. Less echogenicity and an enlargement of the median nerve proximal to the carpal tunnel.
Conclusion

Ultrasound is an easy and repeatable method useful in diagnostic algorithm of carpal tunnel syndrome, the median nerve cross-sectional area measurement correlates well with the presence of carpal tunnel syndrome and is both sensitive and specific for the diagnosis.

References

Personal Information