Gadolinium-enhanced 3D T1-contrast inversion recovery fast spin-echo imaging on 3T MR system can reduce ambiguous findings in detection of small brain metastases

Poster No.: C-1730
Congress: ECR 2012
Type: Scientific Exhibit
Authors: R. Ito¹, A. Mishina², H. Kitahara¹, M. Takahashi¹; ¹Otsu/JP, ²Uji/JP
Keywords: Metastases, Imaging sequences, MR, Neuroradiology brain
DOI: 10.1594/ecr2012/C-1730

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method ist strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Purpose

In evaluation of brain metastases using Gadolinium (Gd)-enhanced magnetic resonance (MR) imaging, elimination of small pseudo-lesions originating from contrast-enhancing vascular structures is crucial for determining accurate numbers of metastases (ref. 1-5). Gd-enhanced inversion recovery fast spin-echo (IR-FSE) imaging does not usually demonstrate contrast enhancement of small vessels with slow flow due to the flow-void phenomenon (ref. 1, 3, 6, 7).

We assessed whether adding Gd-enhanced 3D IR-FSE imaging to Gd-enhanced 2D SE type imaging on a 3T MR system improves diagnostic confidence in the evaluation of brain metastases.

Methods and Materials

Patients: The MR images of five patients with brain metastases of lung cancer (2 women and 3 men; age range, 54-68 years) at onset and after stereotactic radiosurgery (2-9 months follow-up period) were retrospectively evaluated.

MR imaging: All images were acquired with a 3T MR system. The following imaging parameters were used after administration of contrast material: repetition time 450-480 ms, echo time 10 ms, and 3-mm section thickness for 2D SE imaging (Fig. 1a); repetition time 2000 ms, echo time 98 ms, inversion time 780 ms, an echo train length of 43, acquisition volume size 0.96 x 0.96 x 1.20 mm, and imaging time 6 min 34 sec for 3D IR-FSE imaging (Fig. 1b). Gd-enhanced 3D IR-FSE imaging can clearly depict the anatomical location of enhancing lesions due to the high degree of contrast between gray matter and white matter (ref. 7, 8).

Image interpretation: A candidate lesion for metastasis at onset, which included a pseudo-lesion originating from a contrast-enhancing vessel, was defined as an intraparenchymal round or oval enhancement area less than 5 mm in diameter. Two neuroradiologists interpreted the Gd-enhanced 2D SE images and rated the candidate lesions within the cerebral hemispheres using a five-point confidence rating scale (grade 1 = definitely not metastasis; grade 2 = probably not metastasis; grade 3 = indeterminate; grade 4 = probably metastasis; grade 5 = definitely metastasis) by consensus (interpretation 1). After interpretation 1, the Gd-enhanced 3D IR-FSE images (reconstructed to images with 3-mm section thickness matched to the section thickness of the axial 2D SE images) were interpreted. The candidate lesions picked up in interpretation 1 were re-rated (interpretation 2) (ref. 1). Diagnostic confirmation was based on follow-up MR imaging. When a lesion showed no change, a reduction in size,
or disappeared on follow-up Gd-enhanced 2D SE imaging, it was considered a non-metastatic lesion.

Statistical analysis: A Wilcoxon matched-pairs signed-rank test was used to analyze whether the grades of the confidence rating scale were improved by the additional information obtained from interpretation 2. P < .01 was considered statistically significant.

Images for this section:

![Images showing brain imaging](image_url)

Fig. 1: A 54-year-old patient with brain metastases of lung cancer. The signal from enhancing vessels shown on Gd-enhanced 2D SE image (a) is well suppressed on Gd-enhanced 3D IR-FSE image (b). Central gray matter is clearly depicted on the 3D IR-FSE image that provides excellent contrast between gray matter and white matter.
Results

Eighty-six candidate lesions were detected in interpretation 1. 72 lesions were rated into grades 2 - 4 and 67 lesions of this group were re-rated into grade 1 [n = 62; 32 lesions from grade 2, 22 lesions from grade 3, 8 lesions from grade 4], grade 2 (n = 2, 2 lesions from grade 3), or grade 5 [n = 3, one lesion each from grade 2, grade 3, and grade 4] in interpretation 2 (Table 1). The 8 lesions that were re-rated from grade 4 to grade 1 were potentially false-positive findings. The ambiguous findings were attributed to enhancing vessels themselves and ghosts from these vessels (Fig. 2, 3). The difference in the number of grades between interpretation 1 and 2 was statistically significant. Diagnostic confidence was improved by the additional information obtained from interpretation 2.

Images for this section:

Confidence Rating of 67 Re-rated Lesions

<table>
<thead>
<tr>
<th>Session 1</th>
<th>Session 2</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 1</td>
<td>Grade 2</td>
</tr>
<tr>
<td>Grade 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade 2</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>Grade 3</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>Grade 4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Grade 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 1
Fig. 2: A 68-year-old patient with brain metastases of lung cancer. Gd-enhanced 2D SE image (a) shows a candidate lesion with contrast enhancement in the right occipital lobe (arrow). Gd-enhanced 3D IR-FSE image (b) and follow-up 2D SE image (c) acquired after stereotactic radiosurgery show no abnormal enhancement in the corresponding area. The lesion is considered to be ghost enhancement representing a phase-shift artifact from a vessel (straight sinus). The 3D IR-FSE image shows small nodular enhancing lesions rated as grade 5 after the sessions (arrow-heads in b).
Fig. 3: A 63-year-old patient with brain metastases of lung cancer. Gd-enhanced 2D SE image (a) shows candidate lesions with contrast enhancement (arrows in a). Gd-enhanced 3D IR-FSE image (b) show no abnormal enhancement in the corresponding area. The lesions are considered to be a ghost enhancement representing a phase-shift artifact from the anterior cerebral arteries because follow-up 2D SE image (c) acquired after stereotactic radiosurgery shows contrast enhancement in the different locations from the corresponding areas.
Conclusion

In evaluating brain metastases, Gd-enhanced 3D IR-FSE imaging in combination with Gd-enhanced 2D SE imaging can reduce ambiguous findings, including potential false-positive findings.

References

Personal Information

Ryuta ITO MD.
Department of Radiology, Shiga University of Medical Science, Otsu, Japan.

E-mail: itoh@belle.shiga-med.ac.jp

Acknowledgment

We thank Shuichi Imai for his technical suggestions about 3D inversion recovery fast spin-echo imaging. This work was supported in part by Grants-in-Aid for Scientific Research (Ministry of Education, Culture, Sports, Science and Technology, Japan).