Radiology of lines and tubes in the intensive care unit

Poster No.: C-0247
Congress: ECR 2012
Type: Educational Exhibit
Authors: S. N. Jain¹, A. Kumar², R. U. VARMA¹; ¹MUMBAI, MAHARASHTRA/IN, ²Mumbai, Maharashtra/IN
Keywords: Acute, Catheters, Plain radiographic studies, Lung
DOI: 10.1594/ecr2012/C-0247

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.

As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.

You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.

Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.

www.myESR.org
Learning objectives

• To illustrate the role of portable chest radiograph in evaluating tubes, catheters and other devices in patients admitted in intensive care units

Background

• A variety of devices are used in the intensive care unit for long durations. It has been reported that up to 27% of newly placed catheters or tubes were improperly positioned and that 6% resulted in a radiographically visible complication.[1] Although many such abnormalities may not be immediately life-threatening, some require rapid correction to avoid clinical deterioration in patients with marginal cardiopulmonary reserve. • All catheters have the potential risks of coiling, misplacement, knotting, and fracture. Hence, it is important to periodically check that these devices are correctly placed so as to prevent complications.

Imaging findings OR Procedure details

• A wide variety of devices used in the ICU can be evaluated using the portable chest radiograph.

• The commonly used ones are nasogastric tube, endotracheal tube, tracheostomy tube, intercostals drain, central venous catheter, Swan-Ganz catheter, pacemaker and automated implantable cardioverter defibrillator.

• The portable chest radiograph not only helps to confirm correct placement of these devices, but also helps in early detection of complications associated with their use.

• Examples of malpositioning of these devices and various radiographically detectable complications are illustrated in this exhibit.

Nasogastric tube

The nasogastric (NG) tube is inserted for either feeding the patient or for aspiration of gastric contents, and for these purposes the tip should lie within the stomach. The NG tube has multiple side holes. There are terminal lead balls to facilitate identification of the tip. Ideally, the tip of NG tube should lie with its side holes in the gastric antrum. If the side holes are positioned within the esophagus there is increased risk of aspiration [Figure 1]. For this reason, the tip of the NG tube should be positioned at least 10-cm caudal to location of the gastroesophageal junction. Inadvertent insertion into the trachea
and bronchus [Figure 2] can cause pneumonia, pulmonary contusion, or pulmonary laceration.

Endotracheal tube

- The endotracheal (ET) tube is inserted for ventilation of both the lungs and for prevention of aspiration. It has a terminal hole and a cuff.
- The satisfactory position of an ET tube in the neutral position of the neck is with the tip 5-7 cm above the carina. The location can vary approximately 2 cm in the caudal or cephalad directions with neck flexion and extension, respectively. When the carina is not visible, the tip of the ET tube should be approximately at the level of the medial ends of the clavicle.
- Selective intubation can cause collapse of the contralateral lung [Figure 3], hyperinflation of the ipsilateral lung, or pneumothorax.
- An immediate CXR after intubation is warranted because these complications are not uncommon and because the tube is quite commonly malpositioned.
- Main stem intubation can be clinically occult in about 60% of patients and only revealed on the CXR.
- Inadvertent esophageal intubation [Figure 4] is a dreadful complication, which is mostly diagnosed clinically; it can be detected radiographically by the presence of an over-distended stomach.

Tracheostomy

The tip of the tracheostomy tube should be half way between the stoma and the carina, at the level of the D3 vertebra.

Unlike the ET tube, its position is maintained with neck flexion and extension.

The width of the tube (diameter) should be 2/3rd of the tracheal width, and the cuff should not distend the tracheal wall. It should lie parallel to the trachea.

The possible complications are surgical emphysema, pneumomediastinum, pneumothorax [Figure 5], hemorrhage, false tract, and tracheal stenosis.

Hematoma causes widening of the superior mediastinum.

Pleural drainage tube

- The pleural tube, more commonly known as the intercostal drainage tube (ICD), is inserted through the 4th intercostal space in the anterior or mid-axillary line. It is then directed posteroinferiorly in cases of effusion and anterosuperiorly in cases of pneumothorax. The ICD tube has a terminal hole as well as side holes; the side holes can be identified on a CXR by the interruption in the radiopaque outline of the tube. No
side holes should lie outside the chest/pleura and the tube should not float above the effusion like a 'lotus in the pond.'

Chest tube malposition occurs in about 10% of placements, rendering the tube malfunctioning or nonfunctioning [Figure 6]. Occasionally the tube tip may lie in an interlobar fissure or even within the lung parenchyma [Figure 7]. Both frontal and lateral CXRs are necessary to ensure proper positioning of the chest tube.

Central venous lines

- Central venous lines (catheters) are useful for a variety of purposes, e.g., hemodynamic pressure monitoring; hemodialysis; and administration of medications, nutrition, and fluids. They provide long-term venous access. Central venous lines are inserted through major veins such as the subclavian, internal jugular, or femoral veins into the superior vena cava. • The tip of the line should be distal to the last venous valve, which is located at the junction of the internal jugular and the subclavian veins. On the CXR, the position of the valve corresponds to the inner aspect of the first rib [Figure 8]. Many central venous lines have two or three lumens, each with a different orifice. If the tip of the line is positioned in the superior vena cava, all orifices will be distal to the last valve. On the CXR, the first anterior intercostal space corresponds to the approximate site of the junction of the brachiocephalic veins to form the superior vena cava [Figure 8]. On the CXR, the cavoatrial junction corresponds to the lower border of bronchus intermedius [Figure 8].[4] If the line tip reaches the right atrium, it can cause dysrhythmia or result in injection of undiluted toxic medications into the heart.

- In about 30% of cases the initial radiographs show a malpositioned central venous line.[5] Complications vary with the type of line and the site of insertion. Pneumothorax occurs in up to 6% of procedures and is more common with the subclavian approach [Figure 9]. If initial placement fails, a CXR before attempting the procedure on the other side helps avoid bilateral pneumothoraces. • If the central venous line tip abuts the venous wall there is a risk of vessel perforation, with resultant infusion of fluid into the mediastinum or pleural or pericardial space. On the CXR, this complication will appear as mediastinal widening [Figure 10], enlargement of the cardiac silhouette, or a new pleural effusion [Figure 11]. • Other complications are abnormal course, cardiac perforation, and arrhythmias. Abnormal course of a central venous line or malpositioning occurs when it enters a tributary such as the azygos vein, subclavian vein, internal mammary vein, or an anomalous vein such as a persistent left-sided superior vena cava; the line may even enter the carotid vessels [Figure 12].[6]

Pulmonary artery (Swan-Ganz) catheter
•The Swan-Ganz catheter is a flow-directed balloon-tipped pulmonary artery catheter. The balloon is inflated to measure the capillary wedge pressure. This catheter is widely used for monitoring circulatory hemodynamics in the management of a variety of critical illnesses. To measure pulmonary artery pressure and capillary wedge pressure, the tip of catheter needs to be in the right or left pulmonary artery. To avoid complications, the tip of the Swan-Ganz catheter must not be more than 1 cm lateral to the mediastinal margin. The rule of thumb is that the catheter should not extend beyond the pulmonary hilum on the CXR; else, it should be retracted.[7]•Potential complications are intracardiac knotting, pulmonary infarction [Figure 13], pulmonary artery perforation, arrhythmias, cardiac perforation, and placement in the inferior vena cava [Figure 14].

Intra-aortic balloon pump

•Intra-aortic balloon pump (IABP) is a long-balloon temporary circulatory assist device that works on the principle of cardiac counter-pulsation. The IABP is used to support the circulation. • The balloon, approximately 25-cm long, is mounted on a catheter. The catheter tip is visible as a 3 x 4-mm rectangular metallic density while the rest of the catheter is radiolucent [Figure 15]. The catheter is inserted through the femoral artery. The balloon is inflated with gas during diastole and deflates during systole, resulting in increase in coronary blood flow and reduction in left ventricular afterload (and hence, reduction in myocardial oxygen consumption).[8] • To avoid occlusion of the left subclavian artery and visceral and renal arteries, its tip should be slightly cephalad to the carina (2nd-3rd intercostal space). The balloon should not occlude more than 85-90% of the aortic diameter.

Pacemaker

•Pacemakers are used in cases of severe sinus node dysfunction, complete heart block, and various arrhythmias. They have two main elements: a pulse generator and a lead wire with electrodes. The single-lead pacemaker is the most basic type and is positioned with its tip in the right ventricular apex [Figure 16A]. An atrioventricular two-lead sequential pacemaker has one electrode in the right atrium and the other at the right ventricular apex [Figure 16B]. Sometimes a third lead is placed in the coronary sinus to pace the left ventricle [Figure 17]. It is not feasible to insert an electrode in the left side of the heart due to the high pressures in these chambers. • A lateral CXR is usually required to confirm the position of the electrode in the right atrial appendage. The tip points anteriorly when correctly positioned. The tip may have a slight bend as it abuts the wall but there should no sharp bends. • The potential complications are malposition, intracardiac knotting [Figure 18], fracture, perforation [Figure 19], cardiac tamponade, arrhythmias, infection, and hemorrhage. Twiddler’s syndrome is a rare disorder in which twisting of the lead occurs either due to the patient’s manipulation or spontaneously [Figure 20].
Automated implantable cardioverter debrillator

- Automated implantable cardioverter debrillator (AICD) is used in cases of recurrent refractory ventricular tachycardia. It has two electrodes (one electrode in the right atrium and the other in the right ventricle). The lead is wider compared to the pacemaker lead and has a 'coiled-spring' appearance [Figure 21]. Complications are similar to those with transvenous pacemakers.

Pediatric lines

- Some catheters are only used in the pediatric population, for example, the umbilical artery and venous catheters. They are used for vascular access for exchange transfusion; hyperalimentation; and measurement of blood gases, pressures, electrolytes, etc.
- The umbilical venous catheter courses anteriorly and cephalad in the midline, with posterior angulation in the liver [Figure 22]. The umbilical artery catheter initially dips into the pelvis to enter the iliac artery before coursing superiorly in the aorta [Figure 22].[9]
- The umbilical venous catheter should reach the base of the right atrium or the cephalad portion of the inferior vena cava [Figure 22]. This is sometimes difficult to ascertain. The rule of thumb is that the tip should be approximately at the level of D8-D9 vertebrae. It lies on the right side on the anteroposterior radiograph. On the lateral CXR, it lies anteriorly [Figure 22].
- There should be no coiling, bend, or kink in the catheter. Insertion into the hepatic vein, peripheral portal vein [Figure 23], left atrium [Figure 24], right ventricle, or even into the pulmonary arteries can occur. Cardiac perforation, cardiac arrhythmias, valvular injury, and portal vein or pulmonary artery thrombosis are some of the complications.
- The umbilical artery catheter should be at the level of the D6-D10 vertebrae (high position) or at the level of the L3-4 vertebrae (low position) to ensure that its tip is away from the origins of vessels supplying vital organs (the carotids in the high position and the renal vessels in the low position). The high position is usually preferred. Thrombosis and ischemia are well-known complications. In contrast to the umbilical venous catheter, the umbilical artery catheter dips initially before it takes a path parallel to the spine on the left side [Figure 22]. On a lateral CXR, it lies posteriorly.
Fig. 1: Figure 1 (A,B): Frontal (A) and lateral (B) radiographs of the neck show a NG tube coiled in the upper esophagus with its tip in the oropharynx.
Fig. 2: Frontal radiograph of the chest shows a NG tube forming a loop in the left bronchus before the tip reaches the right lower lobe bronchus.
Fig. 3: Figure 3 (A,B): Frontal chest radiographs show an endotracheal tube in the right main bronchus, causing hyperinflation of the ipsilateral lung and partial collapse of the left lung. After withdrawal of the tube into the trachea, the left lung has inflated
Fig. 4: Figure 4: Frontal radiograph of a neonate shows inadvertent placement of an endotracheal tube in the esophagus with distension of the esophagus and stomach with air.
Fig. 5: Figure 5: Frontal chest radiograph shows complications of tracheostomy: pneumothorax, pneumomediastinum, and surgical emphysema
Fig. 16: Figure 16 (A,B): Frontal chest radiograph (A) shows the optimal position of the electrode of a single-lead pacemaker. The electrode has been placed in the right ventricular apex. Frontal chest radiograph (B) shows a two-lead pacemaker that has one electrode in the right atrium and the other at the right ventricular apex.
Fig. 17: Figure 17: Frontal chest radiograph shows optimal position of a biventricular pacemaker. Besides the electrodes in the right atrium and right ventricle, the third electrode is placed in the coronary sinus.
Fig. 18: Figure 18: Frontal chest radiograph shows coiling of the lead of a single-lead pacemaker in the right atrium
Fig. 19: Figure 19: Frontal chest radiograph shows abnormal course of the lead with the electrode tip overlying the liver (arrow). This was due to cardiac perforation by the pacemaker lead, with a fatal outcome.

Fig. 20: Figure 20: Frontal chest radiograph shows recoil of the pacemaker lead with its tip in the superior vena cava. This is called Twiddler’s syndrome.
Fig. 21: Figure 21: Frontal chest radiograph of a patient with automated implantable cardioverter debrillator. Dense bands along the electrode are characteristic of this device.
Fig. 22: Figure 22 (A,B): Frontal (A) and lateral (B) radiographs of the chest and abdomen of a neonate demonstrate the correct position of an umbilical venous catheter (to the right of the spine) and an umbilical artery catheter (high position). Note the curve of the venous catheter as it passes through the portal sinus and the classical dip of the arterial catheter in its proximal course.
Fig. 15: Figure 15: Frontal chest radiograph demonstrates an optimally positioned intra-aortic balloon pump catheter. The catheter tip is identified by a rectangular metallic density (arrow).
Fig. 14: Frontal chest radiograph shows malposition of a Swan-Ganz catheter in the inferior vena cava
Fig. 13: Frontal chest radiograph shows the tip of a Swan-Ganz catheter lying in the descending branch of the right pulmonary artery. The right paracardiac opacity is due to pulmonary infarction.
Fig. 12: Figure 12: Frontal chest radiograph shows an abnormally medial course of the catheter in a case of inadvertent carotid cannulation
Fig. 11: Frontal chest radiograph of a patient who was receiving fluids through a right jugular central venous catheter shows an opaque right hemithorax (which was a fresh finding compared to earlier normal radiographs). This was due to vessel perforation by the catheter and resultant accumulation of fluid in the pleural space.
Fig. 10: Figure 10: Frontal chest radiograph following placement of a central venous catheter shows right paratracheal soft tissue with a bulging contour, due to mediastinal hematoma.
Fig. 9: Figure 9: Frontal chest radiograph shows a left-sided pneumothorax following insertion of a central venous catheter. Note that the subclavian approach was used for insertion of the catheter.

Fig. 8: Figure 8: Diagrammatic representation of the last valves in the internal jugular and subclavian veins. The valves are located near the inner aspects of the first ribs. The brachiocephalic veins join to form the superior vena cava (straight arrow) near the 1st anterior intercostal space. The cavoatrial junction (curved arrow) is where the superior vena cava crosses the bronchus intermedium.
Fig. 7: Figure 7: Contrast-enhanced axial CT image of the same patient as figure 6 demonstrates the tip of the intercostal drainage tube within the lung.
Fig. 6: Figure 6: Frontal chest radiograph shows moderate right pleural effusion. The intercostal drainage tube was not functioning because of an abnormally low position.
Fig. 23: Figure 23: Frontal radiograph of the abdomen shows looping of an umbilical venous catheter in the liver with its tip in the right branch of the portal vein.
Conclusion

• The portable CXR is invaluable for monitoring the various indwelling devices used in critically ill patients. A systematic approach and knowledge of the radiographic features of the common indwelling tubes and lines is of the utmost importance.

Personal Information

References