Dual-energy CT for the preoperative evaluation of lung function: correlation with 99mTc-MAA SPECT

Poster No.: C-1350
Congress: ECR 2011
Type: Scientific Exhibit
Authors: S. Kudomi1, Y. Ueda1, H. Daimyo-hji1, K. Ueda1, K. Ichikawa2, M. Okada3, Y. Kunihiro3, 1Yamaguchi/JP, 2Kanazawa/JP, 3Yamaguchi/JP
Keywords: Cost-effectiveness, Contrast agent-intravenous, SPECT, CT-Angiography, Pulmonary vessels, Lung
DOI: 10.1594/ecr2011/C-1350

Any information contained in this pdf file is automatically generated from digital material submitted to EPOS by third parties in the form of scientific presentations. References to any names, marks, products, or services of third parties or hypertext links to third-party sites or information are provided solely as a convenience to you and do not in any way constitute or imply ECR's endorsement, sponsorship or recommendation of the third party, information, product or service. ECR is not responsible for the content of these pages and does not make any representations regarding the content or accuracy of material in this file.
As per copyright regulations, any unauthorised use of the material or parts thereof as well as commercial reproduction or multiple distribution by any traditional or electronically based reproduction/publication method is strictly prohibited.
You agree to defend, indemnify, and hold ECR harmless from and against any and all claims, damages, costs, and expenses, including attorneys' fees, arising from or related to your use of these pages.
Please note: Links to movies, ppt slideshows and any other multimedia files are not available in the pdf version of presentations.
www.myESR.org
Purpose

Dual source computed tomography (DSCT) can obtain dual energy images in the same phase of contrast enhancement by using different tube voltages. Dual energy CT (DECT) pulmonary angiography using DSCT allows selective visualization of the distribution of iodine contrast media in the lung parenchyma in addition to a standard pulmonary CT angiogram with high resolution morphology without additional dose. Therefore, DECT pulmonary angiography was expected to improve the diagnosis accuracy in pulmonary CT examination and to replace other functional imaging such as lung scintigraphy. Several studies of DECT iodine mapping were reported about its clinical efficacy for diagnosis [1-4]. For evaluating acute pulmonary embolism, DECT iodine mapping is able to display pulmonary perfusion defects with good agreement with scintigraphic findings using technetium-99m labeled macroaggregated albumin (99mTc-MAA) [5, 6]. However, DECT iodine mapping was evaluated only based on the visual presence or absence of perfusion defects by observers. To the best of our knowledge, there were few studies about objective evaluation of iodine mapping [7, 8]. Preoperative quantification of regional lung function prior to lung resection or transplantation is an indication for single photon emission computed tomography (SPECT) using 99mTc-MAA. The purpose of this study was to assess the feasibility of DECT pulmonary angiography for the preoperative evaluation of lung function by comparing it with SPECT using 99mTc-MAA.

Methods and Materials

We made a retrospective review of 25 patients (men-women, 17:8; mean age, 69.1 years; age range, 45-83 years) underwent DECT pulmonary angiography and 99mTc-MAA SPECT during November 2008 and February 2010. The mean time between examinations was 2.6 days (range, 0-20). The study had been approved by the university’s ethics committee prior to patient recruitment.

All CT examinations were performed with a 64 slice DSCT (Somatom, Definition, Siemens Healthcare) in dual energy mode. Tube voltages were set to 140 kV (tube A) and 80 kV (tube B). To compensate for the lower photon output of tube B the reference tube current was set to 210 mA for tube B and 30 mA for tube A. Automatic tube current modulation (CARE Dose 4D) was used in all cases. The detector collimation was set to 0.6 × 64 mm. For DECT pulmonary angiography, 100ml medium-concentration iodine-based contrast media (Omnipaque 300; Daiichi-Sankyo) was administered at a flow rate of 3.0 ml/s followed by a 30 ml saline chaser bolus at the same injection rate. Scan delay time was set to 25 s. A caudocranial scan direction was chosen in order to avoid beam hardening artifacts due to high concentrations of iodine in the area of the subclavian vein or superior vena cava [9]. Images were reconstructed with 1.0 mm slice thickness and 1.0
mm reconstruction increment using a soft tissue kernel (D40). DECT iodine distribution maps were generated based on the spectral behavior of iodine.

The SPECT data acquisition (360 degrees, 128×128 matrix, 60 view-projections, 20 s/rotation, 12 time rotations) was performed after an intravenous injection of 185 MBq of 99mTc-MAA by using the dual head # camera (E.CAM, Siemens HealthCare) using the low-energy high-resolution, parallel hole collimator. SPECT data reconstruction was achieved by filtered back projection using the Butterworth filter with a cut-off frequency of 0.53 mm$^{-1}$ and order 8.0.

To estimate the potential of DECT iodine mapping for objective analysis, left to total ratio (LTR) was applied for simulating pulmonary reserve after unilateral lung resection [10]. LTR was calculated by the following equation.

$$\text{LTR} = \frac{S_L}{S_L + S_R} \quad (1)$$

Where S_L and S_R are pixel values of the left lobe and the right lobe, respectively.

Pixel values of the left and right lungs obtained from both the DECT iodine maps and 99mTc-MAA SPECT were separately summed and LTR was calculated, respectively. Then, we evaluated the correlation between the ratios.

Results

Fig. 1 on page 4 shows the linear regression analysis of the LTRs obtained with DECT iodine mapping vs. 99mTc-MAA SPECT. The LTRs of DECT iodine map and 99mTc-MAA SPECT showed a strong positive correlation ($r = 0.95; p < 0.001$). The gradient of fitted curve was 0.75 and it was under 1.0. It shows that differences between right lung and left lung were underestimated in DECT iodine map compared with 99mTc-MAA SPECT (Fig. 2 on page 4). We assume that these differences depend on pharmacokinetic difference and it is inevitable. In this study, we applied the 99mTc-MAA SPECT as a reference; however, we think there needs to be more consideration whether any current method of measuring lung perfusion is adequate for a correct diagnosis.

Although we used the a 30 ml saline chaser bolus after contrast media injection and selected a caudocranial scan direction to avoid beam hardening artifacts due to high concentrations of iodine in the area of the subclavian vein or superior vena cava, some non-applicable sections were found in the DECT iodine maps because of artifacts from concentrated contrast enhanced material. Recently, the studies about optimization of injection protocol were reported [11, 12]. Non-applicable sections can be diminished by using optimal protocol of contrast media injection.
Fig. 1: Scatter plots show correlations between LTR of DECT iodine mapping and LTR of 99mTc-MAA SPECT. The LTRs of DECT iodine map and 99mTc-MAA SPECT showed a strong positive correlation ($r = 0.95; p < 0.001$).
Fig. 2: Axial image of 99mTc-MAA SPECT (a) shows significant bilateral difference of pixel value. The differences between right lung and left lung were underestimated in DECT iodine map (b) compared with 99mTc-MAA SPECT.
Conclusion

There is a strong correlation between DECT iodine mapping and 99mTc-MAA SPECT. Our results showed the possibility of DECT pulmonary angiography providing pulmonary functional information for the preoperative evaluation of lung reserve. It can be used in addition to a standard pulmonary CT angiogram with high resolution morphology without additional dose.

References

Personal Information

Shohei Kudomi is a Radiological Technologist (R.T.) at the Department of Radiological Technology, Yamaguchi University Hospital. He received a Bachelor of Science (B.Sc.) degree in health science from Kanazawa University in 2004.